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Mobile Visual Search Scenarios and Problems

 Technology: key point based Image Search
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by sending images/raw features over the channel ?




MPEG-7 Compact Descriptor for Visual Search (CDVS)

*MPEG CDVS Standardization Scope

—Front-end: image feature capture and compression
—Server Back-end: image feature indexing and query processing
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*Objectives/Challenges:
—Real-time: front end real time performance, e.g, 640x480 @30fps

—Compression: Low bit rate over the air, achieving 100 X compression w.r.t to
sending images, or 10X compression of the raw features.

—Matching Accuracy: >95% accuracy in pair-wise matching (verification) and
>90% precision in identification

—Indexing/Search Efficiency: real time backend response from BIGDATA (100m)
visual repository




SIFT Patent and Detection Speed

*SIFT Patent

— SIFT patent was licensed to an unknown party, and the un-certainty of
its licensing policy puts MPEG CDVS in jeopardy

— Need to circumvent the key claims of the patent — DoG filtering
*Complexity Reduction:
— The SIFT detection is computationally heavy

— For mobile application deployment and especially for AR type
applications, where visual queries are generated at much faster pace,
the complexity need to be significantly reduced for mobile computing
platform.
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* Approximate Scale Space with Box Filters




Blob detection: Difference of Gaussians (DoG)
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e Convolving the filter with an image in an efficient manner:
I'x Lo = I* (9o, = 90,) = (I % goy) — (I * go,)
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* We can exploit the separability property of the Gaussian filter!

* Requires O(2N) multiplications and O(2N) additions per pixel!




Difference of Gaussians pipeline
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Can we speed up this process even further?




Gaussian kernel approximation using Box filters

/> Box Filter

|| Foragiven pixel, the box filter computes the
average over the rectangle (A,B,C,D).

D : 4 )
S =In(C) + In(A) — In(D) — In(B)
Requires only 4 additions
and 1 multiplication!
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Integral Image: A table whose entries hold the
sum of the pixels from the origin to the point

(X, y).

= s(x,y)




Gaussian Filter Box Filters
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We need to find a coarse approximation of the Gaussian kernel using a
set of k box filters.

* We can use integral images for fast convolution
* Complexity can be reduced if we use a few box filters
* O(k) multiplications and O(4k) additions, where k is the number of
box filters used.
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CABOX design

We can approximate a Gaussian kernel with a set of box filters by
solving the following problem:

Desired Height
kernel vector
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CABOX: Gaussian kernel approximation
using Box filters

We can then plug in our approximations in the scale space pipeline.

Approximated
Gaussian Scale -
Space

In essence, we are doing the following approximation:

I*Lo ~ (I*go,_,) — (.[*g(yl) ~ (I*bag) - (I*b(fl)




What Box filters to use for the approximation?

d
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| The size of the Gaussian kernel is
calculated with the following formula:
d
d=2[40] +1
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Extended Dictionary: All possible Concentric Squares Dictionary.

rectangles with minimum size of 2.
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The dictionary will affect the number of boxes used when solving
the optimization problem.
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Approximation results

Concentric Squams

Extended Dictionary Guisian Filters

residual = ||g — Bhl|,

Concentric Squares Extended
o Num. of Residual Num. of Residual
Boxes Boxes
1.249000 3 0.0554 43 0.0068
1.226270 3 0.0578 21 0.0067
1.545008 4 0.0358 42 0.0146
1.946588 6 0.0248 36 0.0087
2.452547 5 0.0192 16 0.0169
3.090016 8 0.0142 18 0.0163

App roximuntions

Dictionnry

Approxunations

@oc=1

.249000

(b) o = 1.226270

(c) o = 1.545008

The influence of the used dictionary
determines not only the quality of the
approximation but also the

number of boxes required.

(d)o = 1.946588 (e) o = 2.452547 (f) o = 3.090016
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Gaussian Scale Space experiments
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The Mean Square Error (MSE) of our approximation method across all octaves
and scales is minimal, considering that the pixel intensities are in the range of
Oto 1.
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Complexity Reduction

On average CABOX reduced the scale space construction time in approximately 44%.
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Feature detection repeatability test

(c) 3003 www.themindrobber.eo.uk

Of those features detected
with CABOX (red circles), 89%
are also detected by VLFeat
(green circles) while the
remaining 11%

correspond to new features.
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End-End MPEG TM Pairwise matching experiment

Replacing DoG with CABOX, has minimum effects on the image matching accuracy
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Summary & Future Work

We presented an integral domain box filter approximation of
scale space which is fast

The accuracy of scale space approximation is achieved by
solving the sparsity constrained filter approximation

Integration into the MPEG CDVS Test Model verified the
robustness and efficiency of the proposed solution

Future Work:
—Develop Parallel CABOX filtering for even faster solution




Further Speed-up: Parallel CABOX

— Integral Image Computation

o L

Approximated
Gaussian Scale -
Space

» Computation of integral image at every scale level!
» Approximation error propagates along the pipeline!
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Parallel CABOX

Parallel Pipeline
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Filters used in the Parallel pipeline are computed using the following formula:
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Parallel CABOX Detection Repeatability

Of those features detected
with Parallel CABOX (red
circles), 72% are also
detected by VLFeat (green
circles) while the remaining
28% correspond to new
features.
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