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ABSTRACT 

 

Locality-Sensitive Hashing (LSH) approximates nearest 

neighbors in high dimensions by projecting original data 

into low-dimensional subspaces. The basic idea is to hash 

data samples to ensure that the probability of collision is 

much higher for samples that are close to each other than for 

those that are far apart. However, by applying k random 

hashing functions on original data, LSH fails to find the 

most discriminant hashing-subspaces, so the nearest 

neighbor approximation is inefficient. To alleviate this 
problem, we propose the Grassmann Hashing (GRASH) for 

approximating nearest neighbors in high dimensions. 

GRASH first introduces a set of subspace candidates from 

Linear Discriminant Analysis (LDA); and then it applies 

Grassmann metric to select the optimal subspaces for 

hashing; at last it generates hashing codes based on non-

uniform bucket size design motivated by Lloyd-Max 

quantization. The proposed GRASH model enjoys a number 

of merits: 1) GRASH introduces the Grassmann metric to 

measure similarity between different hashing subspaces, so 

the hashing function could better capture data diversity; 2) 

GRASH obtains the subspace candidates from LDA, so it 
could incorporate the discriminant information into the 

hashing functions; 3) GRASH extends LSH’s 1-d hashing 

subspaces to m-d, i.e. it is a multidimensional extension of 

hashing approximation; 4) motivated by Lloyd-Max 

quantization, GRASH applies non-uniform size bucket to 

generate hashing codes, so the distortion can be minimized. 

Experimental results on a number of datasets confirm the 

validity of our proposed model. 

 

Index Terms—hashing, subspace learning, grassmann 

manifold, optimization 

 

1. INTRODUCTION 

Similarity search is a common task in many applications. 

It involves a collection of samples which are characterized 

by a set of features and represented as points in a multi-

dimensional space [1][10]. The K Nearest Neighbors (K-NN) 

serves as a solution to similarity search. When the number 

of dimensions d is small, K-NN solves this problem well; 

however, when d is large, conventional indexing solutions 

for K-NN search is known to suffer from the “curse of 

dimensionality” [1][4][5][6], i.e., for large enough d, it 

provides litter little improvement over a linear search. 
Therefore, K-NN poses an obstacle to the further 

development of large scale similarity search system. 

To solve this problem, Locality-Sensitive Hashing (LSH) 

[1][6] is proposed. LSH approximates similarity search 

based on hashing. The basic idea is to hash samples in high 

dimensions so as to ensure the probability of collision is 

much higher for objects that are close to each other than for 

those that are far apart. However, as original proposed, LSH 

suffers from a number of disadvantages. 1) LSH applies 

random hashing functions on original data, so it fails to 

incorporate the distances between different hashing 

subspaces; moreover, LSH doesn’t incorporate the 

discriminant information between samples, i.e. there is no 
penalty for samples with different labels. Therefore, LSH 

requires a large amount of hashing functions to produce a 

satisfactory performance, which is computationally 

intensive. 2) Because the number of hashing functions is 

large, LSH requires a significant amount of space for storing 

the hash table. 3) The performance of LSH is sensitive to a 

number of parameters; to obtain the optimal parameter, 

cross validation is usually applied which is time-consuming. 

In this paper, to in order to alleviate the aforementioned 

problems of LSH, we propose a novel model for 

approximation nearest neighbors in high dimensions, termed 

Grassmann Hashing (GRASH). The procedure of GRASH is 
described as follows: 1) GRASH derives the Fisher faces [8] 

by applying Linear Discriminant Analysis (LDA) on 

original data; 2) GRASH selects the first d Fisher faces, i.e. 

vectors corresponding to first d largest eigenvalues; 3) from 

the derived d Fisher faces, GRASH traverses the 

combination of m Fisher faces (i.e. traverse 

  
  combinations in total) and construct the corresponding 

m dimension subspaces; GRASH also records the 

discriminant energy of every m dimension subspaces 

obtained; 4) GRASH applies the Grassmann distance metric 

together with discriminant energy to select the optimal k 

subspaces; these subspace are used for hashing; 5) GRASH 

applies non-uniform bucket size design to generate hashing 

codes; 6) GRASH applies c-approximation (i.e. c-bit 

distance) on the codes obtained in step 5) to approximates r-

nearest neighbors in Hamming space.  
The proposed GRASH enjoys the following merits 

compared against with LSH: 1) GRASH introduces the 

Grassmann metric to measure similarity between different 

subspaces, so the hashing function could produce have least 

overlap; 2) GRASH obtains the subspace candidates from 

LDA, so it could incorporate the discriminant information 

into the hashing functions; 3) GRASH extends LSH’s 1-d 

hashing subspaces to m-d, i.e. it is a multidimensional 

extension of hashing approximation; 4) motivated by Lloyd-



Max quantization, GRASH applies non-uniform size bucket 

to generate hashing codes, so the distortion can be 

minimized. 

    The rest of this paper is organized as follows: in Section 2, 

we give a brief review on Grassmann manifold and 

Locality-Sensitive Hashing (LSH); in Section 3, we 
introduce our proposed Grassmann Hashing (GRASH) for 

approximating nearest neighbors in high dimensions, which 

consists of Section 3.1 hashing subspace candidates 

selection, Section 3.2 GRASH criterion for optimal 

subspace selection, Section 3.3 Hashing codes based on 

non-uniform bucket size design, Section 3.4 Hamming 

distance for GRASH; in Section 4, we show the 

experimental results comparing GRASH against other 

conventional hashing algorithms; in Section 5, we conclude 

the paper. 

 

2. GRASSMANN METRIC AND LOCALITY 

SENSITIVE HASHING 

In this section, we give a brief review on Grassmann metric 

and Locality Sensitive Hashing (LSH). In GRASH, we 

apply Grassmann metric to measure the distance between 

subspaces, and then we utilize the Grassmann metric and 

discriminant energy as criteria to select the optimal 

subspaces for hashing.  

2.1. Grassmann Metric 

Grassmann manifold        can be defined as the set of d-

dimension linear subspace in    [2][3], i.e. every point on 
the Grassmann manifold refers to a subspace. Let us 

consider the space     
   

 of all     matrices, i.e.       . 

The group of transformation       where   is a full rank 

    square matrix, defines a equivalence relation in     
   

: 
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Therefore, the equivalence classes of     
   

 are in one-to-one 

correspondence with the points on the Grassmann manifold 

      , i.e. each point on the manifold is a subspace.  

    To measure the distance of two points on the Grassmann 

manifold is equivalent to measure the similarities between 

two subspaces. Principal angle [2][3] serves as a geometric 

measure between two subspaces. We consider two matrices 

orthogonormal            on the Grassmann manifold, 

the principal angles                 between two 

subspaces          and          are recursively defined 

as:  
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where              and              are called 

principal vectors of the two subspaces, and     is the 

    smallest angle between two principal vectors    and   .   

    To compute the principal angles between    two 
subspaces, we may apply Singular Value Decomposition 

(SVD) [2] on the product of the two matrices   
   , i.e.,

  
1 2Y Y USV 

         
(3) 

where                ,               and   
                     . The cosine of principal angels    , 

i.e.                 are known as canonical 

correlations[17].  

    In this paper, to measure the distance between subspaces, 

we adopt the geodesic distance (or arc-length) [2][3], which 

is defined as follows: 
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The geodesic distance is derived from the geometry of 

Grassmann manifold. It is the length of geodesic curve 

connecting two subspaces along the Grassmann surface. The 

geodesic distance is a distance measure, but it also satisfies 

the requirements of metric [2][3]. 

 

 
Figure 1 Principal angles   in    and Grassman Distance in 

      . In the Grassmann manifold point of view, two 

subspaces          and          are two points on the 

manifold       , the geodesic distance between these two 

points on the manifold is              .  

2.2. Locality Sensitive Hashing (LSH) 

LSH is introduced as a probabilistic technique suitable for 

solving the approximate K-NN problem [1][5][6]. The basic 

insight of LSH is that it is possible to construct hash 

functions such that the probability of collision is much 

higher for samples that are close to each other than for those 

that are far apart. We consider the case of    with   , LSH 
is defined as follows: 
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where       is a vector with entries selected at random 

from a Gaussian distribution, e.g.       ;    is drawn from 

the uniform distribution, e.g.        ;     is the floor 

operation. The parameters M and W control the locality 

sensitivity of the hash function.  

    For the hashing functions to serve our purpose, we require 

that: 1) for points   and   in    that are close to each other: 
 

 1 1[ ( ) ( )]      for HP h p h q P p q R           (7)  

where i.e. the probability the   and   fall into one bucket is 

“not so small”; 2) for points   and   in    that are far apart:  

 

 2 2 1[ ( ) ( )]      for HP h p h q P p q R cR          (8)  

i.e. the probability the   and   fall into one bucket is small. 
In order for LSH family to be applicable, the following 

conditions have to be satisfied: 1)    ; 2)      . 

 

3. GRASSMANN HASHING FOR APPROXIMATING 

NEAREST NEIGHBOR SEARCHES 

Because the hashing functions H(v) are randomly generated, 

LSH suffers from a number of drawbacks. First, LSH fails 

to incorporate the distance between hashing subspaces; 

moreover, LSH doesn’t incorporate the discriminant 

information between samples. Therefore, the hashing code 

generated by LSH is inefficient; to produce a satisfactory 
performance, LSH requires a large amount of hashing 

functions, which is computation intensive.  Second, because 

the number of hashing functions is large, LSH requires a 

significant amount of space for the hash table storage. Third, 

the performance of LSH is sensitive to a number of 

parameters; to obtain the optimal parameters, a time-

consuming cross validation is usually applied. 

    Grassmann Hashing (GRASH) alleviates the 

aforementioned problems by incorporating the distance 

between projection subspaces and the discriminant 

information between samples from different classes. By 
introducing Grassmann metric and discriminant energy, 

GRASH measures the distance between different hashing 

subspaces and selects the optimal ones for hashing.  

    In this section, we introduce our proposed GRASH 

algorithm. The procedure of GRASH is illustrated in the 

following sub-sections.  

3.1. Hashing Subspace Candidates 
    The first step of GRASH is to introduce a set of subspace 

candidates for hashing. In GRASH, we obtain the hashing 

subspace candidates from Linear Discriminant Analysis 

(LDA) [8], a well-known supervised learning algorithm. We 
apply Fisher faces as basic elements for constructing our 

subspace candidates. LDA obtains the optimal projection W 

as follows: 
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where    is the between-class scatter matrix,    is the 

within-class scatter matrix, W is the set of generalized 

eigenvectors of     and    [8]corresponding to the n 

descending-sorted eigenvalues                 , i.e.,  

 ,     1,2,3,...,B i i W iS w S w i n   (10) 

Then we select the first d generalized eigenvectors, i.e. 

vectors corresponding to first d largest eigenvalues   
           ].  

    We now apply W to construct the hashing subspace 
candidates for GRASH. Let us consider the case of m-

dimension hashing, i.e. each hashing function refers to a 

projection onto a    subspace. To obtain the    hashing 

subspaces, we traverse the combinations of the m Fisher 

faces out of n, i.e. in total    
  combinations; then we 

construct the corresponding hashing subspaces based on the 

m vectors, i.e. apply the m vectors as basis for the m-

dimension hashing subspace [1][5][6]. The derived set of 

   hashing subspace is termed Hashing Subspace 

Candidate Set.  

    We record the discriminant energy of the derived Hashing 

Subspace Candidates, which is defined as follows: 

  

2
m

t i

i
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where t is the index of subspace,    is the generalized 

eigenvalues corresponding to the Fisher face    derived 

from (9) and (10). By applying this energy definition, we 

associate every hashing subspace in the Hashing Subspace 

Candidates with a discriminant power. As we may discover, 

the subspace with largest discriminant energy is          

 12+ 22+…+  2. This cost function is further used as 

part of criteria for selecting optimal hashing functions.  

3.2. GRASH Criterion for Optimal Hashing Subspaces 

To select the optimal m-dimension subspace for hashing, in 

GRASH we develop a criterion based on Grassmann metric 

and discriminant energy proposed in (11). To apply the 

criterion, initially we create a set termed Incoming Set 

    with one element         , and we also duplicate the 

Hashing Subspace Candidate Set to create the Outcoming 

Set     . The criterion for selecting optimal hashing 

subspace is defined as follows: 
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where i is the index of the selected subspace,   is a tuning 

parameter between discriminant energy E and geodesic 

distance     , j is the index of subspaces in the Incoming 



Set    . As we may observe, when    , the GRASH 

criterion becomes discriminant power criterion; when    , 

this criterion collapses to the Grassmann metric, i.e. 

geodesic distance in our case.  
    The selection process iterates as follows: 

1. Initial               ,       ,  

2. for      ,  

3.       if             return; 

4.       else 

5.            find the optimal subspace i from      , based on (12); 

6.      add subspace i to    ; 

7.      subtract subspace i from      

8.       end 

9. end 

where   is the universe set and k is the number of hashing 

functions defined by the users. By applying this criterion, 

we can incorporate the discriminant information regularized 

by the distance between different subspaces. As we may 

observe, in every iteration, we select the most promising 

subspaces from     , based on the discriminant information 

available. To speed up this iterative algorithm, we may build 
a tree data structure for storing E [13]. 

 

Figure 2 A comparison on hashing subspace between LSH 

and GRASH. LSH applies random hashing functions on the 

query; GRASH introduces Grassmann metric as 

penalization and selects the most “promising” subspaces. 

Projections onto these “promising” subspaces can give a 

more precise approximating in the original space.  

3.3. Hashing Codes Based on Non-uniform Bucket Size 

Design  

LSH applies uniform size buckets to generate hashing codes. 

This approach is most effective for data samples from 

uniform distribution, in which case the number of samples 

falling into each bucket is approximately equal. For most 

distributions, the number of samples falling into each bucket 

differs, so distortion rate is high [18].  

    To solve this problem, in GRASH, we apply the non-

uniform size bucket to generate hashing codes. We apply 

Lloyd-Max [18] algorithm to define the quantizer threshold, 

which is achieved by minimizing the distortion error: 
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        (13) 

By applying Lloyd-Max algorithm, we implement non-

uniform size bucket in a customized manner, i.e. each 

bucket is of a different size, but contains approximately 

equal number of samples. The coding process is illustrated 

as follows: first, we project samples onto the subspaces 

selected in Section 3.1 and Section 3.2; second, we define r, 
i.e. the number of bits for each hashing vector; third, sort the 

projected samples along the hashing vector, and cluster 

them into    regions.  

 
Figure 3 Coding by non-uniform bucket size partition on 

Essex University Human Face dataset [16][11][13]. Each 

blue box represents a hash bucket projected onto the 2D 

subspace.   

    Figure 3 shows the partition result of non-uniform bucket 

size on Essex University Human Face dataset. The partition 

is conducted in the following manner: 1) apply the selected 

projections on the whole data set, obtain the set of basis 

             ; 2) project all sample points on the 

maximum variance basis   , find the median value of the 

projected samples   , and split the whole collection of data 

along    at   , i.e. split the current node into left and right 

children; 3) starting from    , for each left and right child, 

project the whole collection of data along the  -th maximum 

variance basis   , find the median value    , and split all the 

children at   , generate code correspondingly; 4) increment 

 , repeat 3) until some predefined criteria for number of 

levels, or the number of samples in the leaf node is satisfied; 

5) obtain codes for the whole dataset. At each node, a 

bucket represented is computed and recorded.  
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    The non-uniform size bucket design for GRASH enjoys 

the following merits: 1) it is a customized query-driven 

design, the number of samples falling into each region is 

approximately equal; therefore, the distortion rate can be 

minimized and the hashing efficiency can be improved; 2) 

by introducing the non-uniform bucket size, we can 
incorporate more amount of discriminant information by 

increasing the “degree of freedom” on coding.  

3.4. Hamming Distance for GRASH 
Similar to LSH, in GRASH, the hashing functions is given :  

 1 2( ) ( ), ( ),..., ( )kg p h p h p h p           (14) 

where k is the number of hashing subspaces. We define the 

probability of collision in Hamming space as follows: 

 
[ ( ) ( )] 1 ( , ) /HP h p h q D p q mkr           (15) 

 where        is the distance between p and q in 

Hamming space, m is the dimension of hashing subspaces. 

As we may observe,     refers to the length of the hashed 

codes.  

 4. EXPERIMENTS 

To confirm the validity of our proposed GRASH, we apply 

this algorithm on a number of datasets and compare our 

approximation performance against other models. We 
performed experiments on two datasets. The first dataset is 

the human face datasets, which contains 6,680 faces of 417 

individuals; each image is represented as a point in 400D 

space. The second dataset is the MSRA-MM dataset, which 

contains 65,443 images of 68 classes; each image is 

represented by its 899D feature.  

    Implementation We implement our proposed algorithm 

as specified in section 3. We first apply LDA on the two 

datasets, and we then obtain the m-dimension subspace with 

largest discrimination energy, and last we apply the 

subspace selection criterion developed in section 3.2 to 
derive the optimal hashing subspaces.  

    Performance Measure In this paper, we apply the 

intersection rate to measure the performance of GRASH 

against that of other algorithms. We compute number of 

nearest neighbors obtained by GRASH and compare them 

against the ground-truth nearest neighbors in the original 

Euclidean space. In this paper, we define the precision as 

follows:  

 

, ,*

,*

1 q GRASH q

q Q q

U U
I

Q U


                  (16)

where          is the set of nearest neighbors returned by 

GRASH, and      is the set returned from the ground truth. 

4.1. Human Face Dataset 

In this section, we apply GRASH to approximate nearest 

neighbors on biometric dataset. To test our proposed model 

with a large number of training samples, we assemble a 

large human face dataset by combining several well-known 

human face dataset, i.e. YALE [8], ORL[14], FERET[17], 

UMIST[15], and Essex[16].  We select 165 faces from 

YALE, 400 faces from ORL, 700 faces from FERET, 575 

faces from UMIST and 4,840 faces from Essex. In total, we 

have 6,880 faces for 417 individuals. All images are 

normalized to 20 20 pixel arrays with 256 gray levels per 

pixel. The 400D pixel is treated as the feature information 

for all samples.  

    On this dataset, we apply intersection rate defined in (16) 

to measure the performance of GRASH again LSH. For 

every hashing subspace, we apply 1-bit, 2-bit and 4-bit (per 

hashing function) coding scheme and compare the 

intersection rate ( i.e. the rate defined in (16)) against that of 

LSH. 

 

Figure 4 The approximation performance (i.e. the 

intersection rate) vs  . In this paper, we apply cross 

validation to record the optimal    The recorded rates are 

averaged on 25 trials; the number of hashing functions is 20. 

Approximation based on 8-NNS is conducted.  

    In Table 1, we adopt 20 hashing functions and conduct 1-

bit, 2-bit and 4-bit coding on each hashing function, i.e. in 

total 20 bits, 40 bits and 80 bits coding for each sample. 

Figure 4 shows the approximation performance versus   on 

the Human Face Dataset. Empirically, the optimal   lies in 

the domain of [0.05, 0.2]. 

4.2. MSRA-MM Dataset 

MSRA-MM dataset[9] consists of two sub-datasets: an 

image dataset and a video dataset. In this paper, we utilize 

the image dataset to test the performance of GRASH. The 

image dataset contains 68 classes, each of which consists of 

around 1,000 images, and in total 65,443 images. All the 

images are collected from the query log of Microsoft Live 

Search. For this image dataset, the original images not 

provided due the copyright issue. However, a set of features 
are available including: 1) 225D block-wise color moment; 

2) 64D HSV color histogram; 3) 256D RGB color histogram; 

4) 144D color correlogram; 5) 75D edge distribution 

histogram; 6) 128D wavelet texture; 7) 7D face features. 

Therefore, for each sample, we have 899D data in total. In  
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this paper, we select 10 classes, i.e., background, bird, 

dragon, email, fruit, hairstyle, panda, people, tree, youtube. 

 
Figure 5 Approximation performance of GRASH against 

LSH and Spectral Hashing [7].The recorded rates are 

averaged on 25 trials; the number of hashing functions is 20.  

    Figure 5 shows the approximation performance (i.e. 

intersection rate) of GRASH against that of LSH and 

Spectral Hashing. Similar to Table 1, we adopt performance 
measure in (16) and apply 2-bit/4-bit hashing based on LSH, 

Spectral Hashing and GRASH.  

5. CONCLUSIONS 

Locality-Sensitive Hashing (LSH) approximates nearest 

neighbors by projecting original data into low-dimensional 

subspaces. However, because LSH applies random 

projections for hashing, it fails to incorporate discriminant 

information between different hashing subspaces. Therefore 

LSH requires a large amount of hashing functions to 

generate satisfactory performance. To alleviate this problem, 

we propose Grassmann Hashing (GRASH) for 
approximating nearest neighbors. GRASH applies 

Grassmann metric and discriminant energy as criteria for 

selecting hashing subspaces, so it could significantly reduce 

the number of hashing functions required to produce a 

satisfactory approximation result. Experimental results 

confirm the validity of our proposed algorithms.  

    In the future, we plan to introduce our proposed algorithm 

to other conventional subspace learning methods e.g. 

LPP[12] for approximating nearest neighbors in high 

dimensions. 
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LSH-1bit 23.9% 28.8% 33.6% 35.1% 

LSH-2bit 31.5% 34.6% 39.3% 39.8% 

LSH-4bit 40.6% 45.7% 51.2% 55.1% 

GRASH-1bit 39.3% 42.4% 49.7% 53.2% 

GRASH-2bit 52.8% 55.8% 68.3% 72.3% 

GRASH-4bit 63.9% 69.7% 73.6% 80.3% 

Table 1 Intersection rate of LSH against that of GRASH. The rate is averaged on 25 trials; for each trial, training samples are 

selected randomly and the average rate is recorded.   is obtained by cross validation. The No. of hashing functions is 20. 

 


