
GRASSMANN HASHING FOR APPROXIMATE NEAREST NEIGHBOR SEARCH

IN HIGH DIMENSIONAL SPACE

Anonymous ICME submission

ABSTRACT

Locality-Sensitive Hashing (LSH) approximates nearest

neighbors in high dimensions by projecting original data

into low-dimensional subspaces. The basic idea is to hash

data samples to ensure that the probability of collision is

much higher for samples that are close to each other than for

those that are far apart. However, by applying k random

hashing functions on original data, LSH fails to find the

most discriminant hashing-subspaces, so the nearest

neighbor approximation is inefficient. To alleviate this
problem, we propose the Grassmann Hashing (GRASH) for

approximating nearest neighbors in high dimensions.

GRASH first introduces a set of subspace candidates from

Linear Discriminant Analysis (LDA); and then it applies

Grassmann metric to select the optimal subspaces for

hashing; at last it generates hashing codes based on non-

uniform bucket size design motivated by Lloyd-Max

quantization. The proposed GRASH model enjoys a number

of merits: 1) GRASH introduces the Grassmann metric to

measure similarity between different hashing subspaces, so

the hashing function could better capture data diversity; 2)

GRASH obtains the subspace candidates from LDA, so it
could incorporate the discriminant information into the

hashing functions; 3) GRASH extends LSH’s 1-d hashing

subspaces to m-d, i.e. it is a multidimensional extension of

hashing approximation; 4) motivated by Lloyd-Max

quantization, GRASH applies non-uniform size bucket to

generate hashing codes, so the distortion can be minimized.

Experimental results on a number of datasets confirm the

validity of our proposed model.

Index Terms—hashing, subspace learning, grassmann

manifold, optimization

1. INTRODUCTION

Similarity search is a common task in many applications.

It involves a collection of samples which are characterized

by a set of features and represented as points in a multi-

dimensional space [1][10]. The K Nearest Neighbors (K-NN)

serves as a solution to similarity search. When the number

of dimensions d is small, K-NN solves this problem well;

however, when d is large, conventional indexing solutions

for K-NN search is known to suffer from the “curse of

dimensionality” [1][4][5][6], i.e., for large enough d, it

provides litter little improvement over a linear search.
Therefore, K-NN poses an obstacle to the further

development of large scale similarity search system.

To solve this problem, Locality-Sensitive Hashing (LSH)

[1][6] is proposed. LSH approximates similarity search

based on hashing. The basic idea is to hash samples in high

dimensions so as to ensure the probability of collision is

much higher for objects that are close to each other than for

those that are far apart. However, as original proposed, LSH

suffers from a number of disadvantages. 1) LSH applies

random hashing functions on original data, so it fails to

incorporate the distances between different hashing

subspaces; moreover, LSH doesn’t incorporate the

discriminant information between samples, i.e. there is no
penalty for samples with different labels. Therefore, LSH

requires a large amount of hashing functions to produce a

satisfactory performance, which is computationally

intensive. 2) Because the number of hashing functions is

large, LSH requires a significant amount of space for storing

the hash table. 3) The performance of LSH is sensitive to a

number of parameters; to obtain the optimal parameter,

cross validation is usually applied which is time-consuming.

In this paper, to in order to alleviate the aforementioned

problems of LSH, we propose a novel model for

approximation nearest neighbors in high dimensions, termed

Grassmann Hashing (GRASH). The procedure of GRASH is
described as follows: 1) GRASH derives the Fisher faces [8]

by applying Linear Discriminant Analysis (LDA) on

original data; 2) GRASH selects the first d Fisher faces, i.e.

vectors corresponding to first d largest eigenvalues; 3) from

the derived d Fisher faces, GRASH traverses the

combination of m Fisher faces (i.e. traverse

 combinations in total) and construct the corresponding

m dimension subspaces; GRASH also records the

discriminant energy of every m dimension subspaces

obtained; 4) GRASH applies the Grassmann distance metric

together with discriminant energy to select the optimal k

subspaces; these subspace are used for hashing; 5) GRASH

applies non-uniform bucket size design to generate hashing

codes; 6) GRASH applies c-approximation (i.e. c-bit

distance) on the codes obtained in step 5) to approximates r-

nearest neighbors in Hamming space.
The proposed GRASH enjoys the following merits

compared against with LSH: 1) GRASH introduces the

Grassmann metric to measure similarity between different

subspaces, so the hashing function could produce have least

overlap; 2) GRASH obtains the subspace candidates from

LDA, so it could incorporate the discriminant information

into the hashing functions; 3) GRASH extends LSH’s 1-d

hashing subspaces to m-d, i.e. it is a multidimensional

extension of hashing approximation; 4) motivated by Lloyd-

Max quantization, GRASH applies non-uniform size bucket

to generate hashing codes, so the distortion can be

minimized.

 The rest of this paper is organized as follows: in Section 2,

we give a brief review on Grassmann manifold and

Locality-Sensitive Hashing (LSH); in Section 3, we
introduce our proposed Grassmann Hashing (GRASH) for

approximating nearest neighbors in high dimensions, which

consists of Section 3.1 hashing subspace candidates

selection, Section 3.2 GRASH criterion for optimal

subspace selection, Section 3.3 Hashing codes based on

non-uniform bucket size design, Section 3.4 Hamming

distance for GRASH; in Section 4, we show the

experimental results comparing GRASH against other

conventional hashing algorithms; in Section 5, we conclude

the paper.

2. GRASSMANN METRIC AND LOCALITY

SENSITIVE HASHING

In this section, we give a brief review on Grassmann metric

and Locality Sensitive Hashing (LSH). In GRASH, we

apply Grassmann metric to measure the distance between

subspaces, and then we utilize the Grassmann metric and

discriminant energy as criteria to select the optimal

subspaces for hashing.

2.1. Grassmann Metric

Grassmann manifold can be defined as the set of d-

dimension linear subspace in [2][3], i.e. every point on
the Grassmann manifold refers to a subspace. Let us

consider the space

 of all matrices, i.e. .

The group of transformation where is a full rank

 square matrix, defines a equivalence relation in

:

1 2 1 2

(0)

1 2 ,

 span() span()

 , D d

Y Y if Y Y

where Y Y R

 



(1)

Therefore, the equivalence classes of

 are in one-to-one

correspondence with the points on the Grassmann manifold

 , i.e. each point on the manifold is a subspace.

 To measure the distance of two points on the Grassmann

manifold is equivalent to measure the similarities between

two subspaces. Principal angle [2][3] serves as a geometric

measure between two subspaces. We consider two matrices

orthogonormal on the Grassmann manifold,

the principal angles between two

subspaces and are recursively defined

as:

1 2span() span()
cos max max

. . 1, 1,

 0, 0,

 1, ..., 1

k k

k k k
u Y v Y

k k k k

k i k i

u v

s t u u v v

u u v v

for i k


 



  

  

 

 (2)

where and are called

principal vectors of the two subspaces, and is the

 smallest angle between two principal vectors and .

 To compute the principal angles between two
subspaces, we may apply Singular Value Decomposition

(SVD) [2] on the product of the two matrices
 , i.e.,

1 2Y Y USV 

(3)

where , and
 . The cosine of principal angels ,

i.e. are known as canonical

correlations[17].

 In this paper, to measure the distance between subspaces,

we adopt the geodesic distance (or arc-length) [2][3], which

is defined as follows:

 2

1 2

2
,c ir

i
Ad Y Y   (4)

The geodesic distance is derived from the geometry of

Grassmann manifold. It is the length of geodesic curve

connecting two subspaces along the Grassmann surface. The

geodesic distance is a distance measure, but it also satisfies

the requirements of metric [2][3].

Figure 1 Principal angles in and Grassman Distance in

 . In the Grassmann manifold point of view, two

subspaces and are two points on the

manifold , the geodesic distance between these two

points on the manifold is .

2.2. Locality Sensitive Hashing (LSH)

LSH is introduced as a probabilistic technique suitable for

solving the approximate K-NN problem [1][5][6]. The basic

insight of LSH is that it is possible to construct hash

functions such that the probability of collision is much

higher for samples that are close to each other than for those

that are far apart. We consider the case of with , LSH
is defined as follows:

 1 2() (), (),..., ()MH v h v h v h v (5)

 () , 1,2,...,i i

i

a v b
h v i M

W

  
  
 

 (6)

where is a vector with entries selected at random

from a Gaussian distribution, e.g. ; is drawn from

the uniform distribution, e.g. ; is the floor

operation. The parameters M and W control the locality

sensitivity of the hash function.

 For the hashing functions to serve our purpose, we require

that: 1) for points and in that are close to each other:

 1 1[() ()] for HP h p h q P p q R    (7)

where i.e. the probability the and fall into one bucket is

“not so small”; 2) for points and in that are far apart:

 2 2 1[() ()] for HP h p h q P p q R cR     (8)

i.e. the probability the and fall into one bucket is small.
In order for LSH family to be applicable, the following

conditions have to be satisfied: 1) ; 2) .

3. GRASSMANN HASHING FOR APPROXIMATING

NEAREST NEIGHBOR SEARCHES

Because the hashing functions H(v) are randomly generated,

LSH suffers from a number of drawbacks. First, LSH fails

to incorporate the distance between hashing subspaces;

moreover, LSH doesn’t incorporate the discriminant

information between samples. Therefore, the hashing code

generated by LSH is inefficient; to produce a satisfactory
performance, LSH requires a large amount of hashing

functions, which is computation intensive. Second, because

the number of hashing functions is large, LSH requires a

significant amount of space for the hash table storage. Third,

the performance of LSH is sensitive to a number of

parameters; to obtain the optimal parameters, a time-

consuming cross validation is usually applied.

 Grassmann Hashing (GRASH) alleviates the

aforementioned problems by incorporating the distance

between projection subspaces and the discriminant

information between samples from different classes. By
introducing Grassmann metric and discriminant energy,

GRASH measures the distance between different hashing

subspaces and selects the optimal ones for hashing.

 In this section, we introduce our proposed GRASH

algorithm. The procedure of GRASH is illustrated in the

following sub-sections.

3.1. Hashing Subspace Candidates
 The first step of GRASH is to introduce a set of subspace

candidates for hashing. In GRASH, we obtain the hashing

subspace candidates from Linear Discriminant Analysis

(LDA) [8], a well-known supervised learning algorithm. We
apply Fisher faces as basic elements for constructing our

subspace candidates. LDA obtains the optimal projection W

as follows:

 1 2

arg max

 = [...]

T

B

TW
W

n

W S W
W

W S W

w w w


 (9)

where is the between-class scatter matrix, is the

within-class scatter matrix, W is the set of generalized

eigenvectors of and [8]corresponding to the n

descending-sorted eigenvalues , i.e.,

 , 1,2,3,...,B i i W iS w S w i n  (10)

Then we select the first d generalized eigenvectors, i.e.

vectors corresponding to first d largest eigenvalues
].

 We now apply W to construct the hashing subspace
candidates for GRASH. Let us consider the case of m-

dimension hashing, i.e. each hashing function refers to a

projection onto a subspace. To obtain the hashing

subspaces, we traverse the combinations of the m Fisher

faces out of n, i.e. in total
 combinations; then we

construct the corresponding hashing subspaces based on the

m vectors, i.e. apply the m vectors as basis for the m-

dimension hashing subspace [1][5][6]. The derived set of

 hashing subspace is termed Hashing Subspace

Candidate Set.

 We record the discriminant energy of the derived Hashing

Subspace Candidates, which is defined as follows:

2
m

t i

i

E  (11)

where t is the index of subspace, is the generalized

eigenvalues corresponding to the Fisher face derived

from (9) and (10). By applying this energy definition, we

associate every hashing subspace in the Hashing Subspace

Candidates with a discriminant power. As we may discover,

the subspace with largest discriminant energy is

 12+ 22+…+ 2. This cost function is further used as

part of criteria for selecting optimal hashing functions.

3.2. GRASH Criterion for Optimal Hashing Subspaces

To select the optimal m-dimension subspace for hashing, in

GRASH we develop a criterion based on Grassmann metric

and discriminant energy proposed in (11). To apply the

criterion, initially we create a set termed Incoming Set

 with one element , and we also duplicate the

Hashing Subspace Candidate Set to create the Outcoming

Set . The criterion for selecting optimal hashing

subspace is defined as follows:

 2arg max (1) (,)i Arc

i

in

i E d i j

j U

    

 


 (12)

where i is the index of the selected subspace, is a tuning

parameter between discriminant energy E and geodesic

distance , j is the index of subspaces in the Incoming

Set . As we may observe, when , the GRASH

criterion becomes discriminant power criterion; when ,

this criterion collapses to the Grassmann metric, i.e.

geodesic distance in our case.
 The selection process iterates as follows:

1. Initial , ,

2. for ,

3. if return;

4. else

5. find the optimal subspace i from , based on (12);

6. add subspace i to ;

7. subtract subspace i from

8. end

9. end

where is the universe set and k is the number of hashing

functions defined by the users. By applying this criterion,

we can incorporate the discriminant information regularized

by the distance between different subspaces. As we may

observe, in every iteration, we select the most promising

subspaces from , based on the discriminant information

available. To speed up this iterative algorithm, we may build
a tree data structure for storing E [13].

Figure 2 A comparison on hashing subspace between LSH

and GRASH. LSH applies random hashing functions on the

query; GRASH introduces Grassmann metric as

penalization and selects the most “promising” subspaces.

Projections onto these “promising” subspaces can give a

more precise approximating in the original space.

3.3. Hashing Codes Based on Non-uniform Bucket Size

Design

LSH applies uniform size buckets to generate hashing codes.

This approach is most effective for data samples from

uniform distribution, in which case the number of samples

falling into each bucket is approximately equal. For most

distributions, the number of samples falling into each bucket

differs, so distortion rate is high [18].

 To solve this problem, in GRASH, we apply the non-

uniform size bucket to generate hashing codes. We apply

Lloyd-Max [18] algorithm to define the quantizer threshold,

which is achieved by minimizing the distortion error:

2

ˆD E x x  
 

 (13)

By applying Lloyd-Max algorithm, we implement non-

uniform size bucket in a customized manner, i.e. each

bucket is of a different size, but contains approximately

equal number of samples. The coding process is illustrated

as follows: first, we project samples onto the subspaces

selected in Section 3.1 and Section 3.2; second, we define r,
i.e. the number of bits for each hashing vector; third, sort the

projected samples along the hashing vector, and cluster

them into regions.

Figure 3 Coding by non-uniform bucket size partition on

Essex University Human Face dataset [16][11][13]. Each

blue box represents a hash bucket projected onto the 2D

subspace.

 Figure 3 shows the partition result of non-uniform bucket

size on Essex University Human Face dataset. The partition

is conducted in the following manner: 1) apply the selected

projections on the whole data set, obtain the set of basis

 ; 2) project all sample points on the

maximum variance basis , find the median value of the

projected samples , and split the whole collection of data

along at , i.e. split the current node into left and right

children; 3) starting from , for each left and right child,

project the whole collection of data along the -th maximum

variance basis , find the median value , and split all the

children at , generate code correspondingly; 4) increment

 , repeat 3) until some predefined criteria for number of

levels, or the number of samples in the leaf node is satisfied;

5) obtain codes for the whole dataset. At each node, a

bucket represented is computed and recorded.

1 2 3 4 5 6 7 8 9 10 11 -5

-4

-3

-2

-1

0

1

2

3

4

5

X1

X2

 Partition on Essex University
Human Face Dataset: L=8, d=2

 The non-uniform size bucket design for GRASH enjoys

the following merits: 1) it is a customized query-driven

design, the number of samples falling into each region is

approximately equal; therefore, the distortion rate can be

minimized and the hashing efficiency can be improved; 2)

by introducing the non-uniform bucket size, we can
incorporate more amount of discriminant information by

increasing the “degree of freedom” on coding.

3.4. Hamming Distance for GRASH
Similar to LSH, in GRASH, the hashing functions is given :

 1 2() (), (),..., ()kg p h p h p h p  (14)

where k is the number of hashing subspaces. We define the

probability of collision in Hamming space as follows:

[() ()] 1 (,) /HP h p h q D p q mkr   (15)

 where is the distance between p and q in

Hamming space, m is the dimension of hashing subspaces.

As we may observe, refers to the length of the hashed

codes.

 4. EXPERIMENTS

To confirm the validity of our proposed GRASH, we apply

this algorithm on a number of datasets and compare our

approximation performance against other models. We
performed experiments on two datasets. The first dataset is

the human face datasets, which contains 6,680 faces of 417

individuals; each image is represented as a point in 400D

space. The second dataset is the MSRA-MM dataset, which

contains 65,443 images of 68 classes; each image is

represented by its 899D feature.

 Implementation We implement our proposed algorithm

as specified in section 3. We first apply LDA on the two

datasets, and we then obtain the m-dimension subspace with

largest discrimination energy, and last we apply the

subspace selection criterion developed in section 3.2 to
derive the optimal hashing subspaces.

 Performance Measure In this paper, we apply the

intersection rate to measure the performance of GRASH

against that of other algorithms. We compute number of

nearest neighbors obtained by GRASH and compare them

against the ground-truth nearest neighbors in the original

Euclidean space. In this paper, we define the precision as

follows:

, ,*

,*

1 q GRASH q

q Q q

U U
I

Q U


  (16)

where is the set of nearest neighbors returned by

GRASH, and is the set returned from the ground truth.

4.1. Human Face Dataset

In this section, we apply GRASH to approximate nearest

neighbors on biometric dataset. To test our proposed model

with a large number of training samples, we assemble a

large human face dataset by combining several well-known

human face dataset, i.e. YALE [8], ORL[14], FERET[17],

UMIST[15], and Essex[16]. We select 165 faces from

YALE, 400 faces from ORL, 700 faces from FERET, 575

faces from UMIST and 4,840 faces from Essex. In total, we

have 6,880 faces for 417 individuals. All images are

normalized to 20 20 pixel arrays with 256 gray levels per

pixel. The 400D pixel is treated as the feature information

for all samples.

 On this dataset, we apply intersection rate defined in (16)

to measure the performance of GRASH again LSH. For

every hashing subspace, we apply 1-bit, 2-bit and 4-bit (per

hashing function) coding scheme and compare the

intersection rate (i.e. the rate defined in (16)) against that of

LSH.

Figure 4 The approximation performance (i.e. the

intersection rate) vs . In this paper, we apply cross

validation to record the optimal The recorded rates are

averaged on 25 trials; the number of hashing functions is 20.

Approximation based on 8-NNS is conducted.

 In Table 1, we adopt 20 hashing functions and conduct 1-

bit, 2-bit and 4-bit coding on each hashing function, i.e. in

total 20 bits, 40 bits and 80 bits coding for each sample.

Figure 4 shows the approximation performance versus on

the Human Face Dataset. Empirically, the optimal lies in

the domain of [0.05, 0.2].

4.2. MSRA-MM Dataset

MSRA-MM dataset[9] consists of two sub-datasets: an

image dataset and a video dataset. In this paper, we utilize

the image dataset to test the performance of GRASH. The

image dataset contains 68 classes, each of which consists of

around 1,000 images, and in total 65,443 images. All the

images are collected from the query log of Microsoft Live

Search. For this image dataset, the original images not

provided due the copyright issue. However, a set of features
are available including: 1) 225D block-wise color moment;

2) 64D HSV color histogram; 3) 256D RGB color histogram;

4) 144D color correlogram; 5) 75D edge distribution

histogram; 6) 128D wavelet texture; 7) 7D face features.

Therefore, for each sample, we have 899D data in total. In

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

μ

A
p

p
ro

xi
m

at
io

n
 P

er
fo

rm
an

ce

GRASH-1bit

GRASH-2bit

GRASH-4bit

this paper, we select 10 classes, i.e., background, bird,

dragon, email, fruit, hairstyle, panda, people, tree, youtube.

Figure 5 Approximation performance of GRASH against

LSH and Spectral Hashing [7].The recorded rates are

averaged on 25 trials; the number of hashing functions is 20.

 Figure 5 shows the approximation performance (i.e.

intersection rate) of GRASH against that of LSH and

Spectral Hashing. Similar to Table 1, we adopt performance
measure in (16) and apply 2-bit/4-bit hashing based on LSH,

Spectral Hashing and GRASH.

5. CONCLUSIONS

Locality-Sensitive Hashing (LSH) approximates nearest

neighbors by projecting original data into low-dimensional

subspaces. However, because LSH applies random

projections for hashing, it fails to incorporate discriminant

information between different hashing subspaces. Therefore

LSH requires a large amount of hashing functions to

generate satisfactory performance. To alleviate this problem,

we propose Grassmann Hashing (GRASH) for
approximating nearest neighbors. GRASH applies

Grassmann metric and discriminant energy as criteria for

selecting hashing subspaces, so it could significantly reduce

the number of hashing functions required to produce a

satisfactory approximation result. Experimental results

confirm the validity of our proposed algorithms.

 In the future, we plan to introduce our proposed algorithm

to other conventional subspace learning methods e.g.

LPP[12] for approximating nearest neighbors in high

dimensions.

6. REFERENCE

[1] A. Gionis, P. Indyk, R. Motwani. Similarity Search in

High Dimensions via Hashing. VLDB 1999.

[2] J. Hamm, D. D. Lee. Grassmann discriminant analysis: a

unifying view on subspace-based learning. ICML 2008

[3] J. Hamm. Subspace-Based Learning with Grassmann

Kernels, PhD Thesis, 2008.

[4] W. Dong, Z. Wang, W. Josephson, M. Charikar, K. Li.

Modeling LSH for Performance Tuning. ICIKM 2008

[5] M. Slaney, M. Casey. Locailtiy-Sensitive Hashing for

Finding Nearest neighbors. IEEE SP-M 2008
[6] A. Andoni, P. Indyk. Near-Optimal Hashing for

Algorithms for Approximate Nearest Neighbor in High

Dimensions. ASFCS 2006.

[7] Y. Weiss, A. Torralba, R. Fergus. Spectral Hashing.

NIPS 2005

[8] P. Belhumeur, J. Hespanha, D. Kriegman. Eigenfaces vs.

Fisherfaces: Recognition using Class Specific Linear

Projection, IEEE T-PAMI 1997

[9] H. Li, M. Wang, X. Hua, MSRA-MM 2.0: A Large-

Scale Web Multimedia Dataset, ICDM-Workshop 2009

[10]Y. Ke, R. Sukthankar, L. Huston. Efficient Near-

duplicate Detection and Sub-image Retrieval. ACM
Multimedia 2004

[11] Y. Fu, Z. Li, J. Yuan, Y. Wu, and Thomas S.

Huang, "Locality vs. Globality: Query-Driven Localized

Linear Models for Facial Image Computing," IEEE T-

CSVT, 2008.

[12] X. He, P. Niyogi. Locality Preserving Projections.

NIPS 2003

[13] Z. Li, L. Gao, A. K. Katsaggelos. Locally Embedded

Linear Subspaces for Efficient Video Indexing and Retrieval.

ICME 2006

[14] F. Samaria, A.C. Pentaland. Parameterization of a
stochastic model for human face identification IEEE

Workshop on Vision and Applications 1994

[15] D. B. Graham, N. M. Allinson. Characterizing virtual

eigensignatures for general purpose face recognition. Face

Recognition: From Theory to Application. Computer &

Systems Sciences, 1998.

[16] D.Hond, L.Spacek. Distinctive Descriptions for Face

Processing. BMVC, 1997.

[17] P. J. Philiips, H. Moon, P. J. Rauss, and S. Rizvi. “The

FERET evaluation methodology for face recognition

algorithms. IEEE Trans. PAMI, 2000.
[18] M. R. Garey, D.S. Johnsom, H.S. Witsenhausen.

Complexity of the Generalized Lloyd-Max Problem. IEEE-

TIT 1982

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4-NNS 8-NNS 16-NNS 32-NNS

LSH-2bit LSH-4bit
Spectral Hashing -2bit Spectral Hashing -4bit
GRASH-2bit GRASH-4bit

 4-NNS 8-NNS 16-NNS 32-NNS

LSH-1bit 23.9% 28.8% 33.6% 35.1%

LSH-2bit 31.5% 34.6% 39.3% 39.8%

LSH-4bit 40.6% 45.7% 51.2% 55.1%

GRASH-1bit 39.3% 42.4% 49.7% 53.2%

GRASH-2bit 52.8% 55.8% 68.3% 72.3%

GRASH-4bit 63.9% 69.7% 73.6% 80.3%

Table 1 Intersection rate of LSH against that of GRASH. The rate is averaged on 25 trials; for each trial, training samples are

selected randomly and the average rate is recorded. is obtained by cross validation. The No. of hashing functions is 20.

