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Abstract:  Key point features are very effective tools in image matching  and
key point  feature  aggregation  is  an effective  scheme for  creating  a  compact
representation of the images for visual search. This solution not only achieves
compression,  but  also offers the benefits  of  better  accuracy in matching and
indexing efficiency. Research is active in this area and recent results on Fisher
Vector  based  aggregation  have  shown  to  be  very  effective  in  a  number  of
application scenarios. In this paper, we present a new direct aggregation scheme
that is adaptive to the descriptor distributions from individual images and does
not enforce a single generative model such as GMM in the Fisher Vector type
aggregation.  Moreover,  it  achieves  better  compression  as  well  as  image
matching  accuracy.  Simulation  results  with  the  image  identification  data  set
from MPEG Compact Descriptor for Visual Search (CDVS) effort demonstrate
the effectiveness of this approach. 

Introduction
Image search involves identifying images with similar objects. The main challenges of
image  search  include  differences  in  illumination,  geometric  transformations,  and
occlusion  of  the  objects  in  the  images.  Scale  Invariant  Feature  Transform  (SIFT)
[Lowe04] is currently one of the most successfully used representation for image search.
SIFT features are essentially a set of salient points identified on the image that can be
reliably  detected  despite  imaging  variations.  However,  despite  their  high  accuracy in
image search, their use in applications like mobile visual search, is handicapped by the
fairly large bit rate of the uncompressed SIFT features. For an VGA sized image, around
1000 SIFT key points are generated on average,  requiring 128 bytes each, leading to  a
visual  query  representation  128k bytes  in  size.  This  may sounds trivial  but  for  large
number of mobile users and applications like augmented reality and smart glasses, the
traffic can quickly grow and put a heavy burden on the mobile networks. 

To address this, direct compression of the SIFT descriptors can be a viable solution. In
fact,  solutions  like  Product  Quantization  [Wang12],  low  memory  transform  coding
[m25929], and Laplacian Embedding based transform coding [Xin13], have shown that
SIFT  descriptor  can  be  compressed  10x times  to  approximately  80~120  bits  per
descriptor, without losing too much key point matching performance. This brings the bit
rate for sending 1000 SIFT key points down to 10~15K bytes range. 

To achieve even further compression efficiency, directly coding key points is becoming
difficult.  Instead, a key point aggregation scheme is introduced. Aggregation does not



seek to preserve the key points information for reconstruction, instead it finds alternative
representation of a collection of key points. This not only achieves better compression,
but  also  makes  the  matching  between  two  images  more  efficient.  Furthermore  as
aggregation typically yields a vectorized representation of the image, it makes efficient
indexing and hashing scheme possible, to help large scale image data base retrieval. 

In this  paper,  we present  an Adaptive KLUster  Aggregation,  or AKULA aggregation
solution that is extremely compact compared with the state of art in aggregation, and the
simulation  with the data set  and ground truth of the MPEG Compact  Descriptors for
Visual Search (CDVS) [Reznik11], demonstrated  that  the new AKULA aggregation is
also performing better in image matching. The AKULA descriptor is also integrated into
the MPEG CDVS Test Model [W13564], and the end-to-end performance of AKULA
vis-a-vis Fisher Vector based aggregation is quite favorable. 

Aggregation in Visual Search
Aggregation takes a collection of key points as input, and output a new descriptor that is
compact, offers better image matching capability, and can also be stateless and leads to
better indexing efficiency. A number of techniques have been proposed in the literature to
aggregate the local key point descriptors into an efficiently search-able Global Descriptor
(GD). One technique is the bag-of-words approach (BoW) [Csurka04],  [Sivic03] which
originated  in  the  text-based  information  retrieval  research.  A  BoW  representation
computes  the  zeroth  order  statistic  of  the  local  descriptors  of  an  image,  which  is  a
histogram of local descriptor counts corresponding to a set of representative visual words
generated by quantizing the feature space. A major limitation of the BoW representation
is  its  low discriminability,  which  makes  its  use  prohibitive  for  large  databases  with
millions of images.

GDs such as Vectors of Locally Aggregated Descriptors (VLAD) [Jegou10] and Residual
Enhanced  Visual  Vectors  (REVV)  [Chen11]  compute  the  first-order  statistic  by  first
computing the errors of the local descriptors from their nearest visual words and then
aggregating them into a mean vector for each visual word. The mean error vectors for all
the visual words are concatenated to form the GD.

Fisher Vector [Perronnin10] and Scalable Compressed Fisher Vector (SCFV) [Duan13]
techniques lead to enhanced matching accuracy by performing second-order aggregation
i.e. computing the mean and variance of local descriptor errors with respect to cluster
centers  of  a  Gaussian  mixture  model.  In  these methods,  the dimension of  each local
descriptor  is  first  reduced  to  d  using  principal  component  analysis  (PCA).  Then,  a
Gaussian mixture model (GMM) is trained with k component Gaussian functions using a
training database. For each of the local descriptors in the image, a d dimensional Fisher
information vector is computed with respect to each of these k Gaussian components. The
Fisher information vectors are averaged for each of the k components separately to form a
k x d dimensional vector, which is then binarized to form the compressed Fisher vector
representation. The scalability is incorporated by masking the bits corresponding to a set
of Gaussian components separately for different images. 

Of the two aggregation schemes REVV and SCFV that were adopted into the MPEG
CDVS visual  object  identification  pipeline,  a  drawback is  that they both requires the
storage  of  a  global  model,  that  can  have  a  large  memory  cost  to  the  mobile



implementation,  and  the  dependence  on  this  global  model,  actually  limits  the
degree-of-freedom (dof) of the aggregation, that yields sub-optimal performance in both
compression efficiency and matching accuracy. 

Adaptive Local Visual Feature Aggregation
The Adaptive KLUster Aggregation (AKLUA), or AKULA with a slight abuse of the
order of the acronym, is trying to capture the aggregating information from visual key
points without  any dependence on a global  generative  model, as the  k-means model in
VLAD and the GMM model in the Fisher Vector cases. This eliminates the cases of poor
coding  of  the information of images  whose generated key points deviate  significantly
from the global  model.  For compact  aggregation that  is  to be sent over a bandwidth
limited channel, the number of GMM components  allowed is limited and this directly
affects the performance of the Fisher Vector type aggregation as outlined in the original
paper [Jegou10]. 

Figure 1. AKULA aggregation process

The process of AKULA description generating is illustrated by a diagram in the Figure 1.
First the dimensionality of the key point feature space, in this case, the SIFT space, is
reduced via a Principal Component Analysis (PCA), then the aggregation is obtained by
directly  computing  the  k-means  centroids  of  key  points  in  some  properly  obtained
subspaces,  and  their  associated  key  points  count.  Let  a  collection  of  key  points  be

,  and  its m-cluster  AKULA  aggregation  is  represented  by  the
centroids  xk,   and key points counts  pk as, ,  obtained
through k-means clustering,  which finds cluster centers and its assignment  qk, such that
the following distortion is minimized, 

 (1)

This  is  typically  computed  though  the  well-known  Lloyd-Max  algorithm  [Lloyd82]
which  has  many  fast  implementations.  It  is  worth  noting that  not  all  the  key  point



generated  are  used  for  the  AKULA aggregation,  and the  selection  of  key  points  for
aggregation is not a trivial process. A typical 640x480 pel VGA sized image can generate
1100 SIFT key points in average and not all  of  them  having good repeatability in key
point  matching.  Therefore  a  key point  selection  process  that  based on a probabilistic
modeling of the likelihood of repeatability in key point  detection  is  used.   Here,  the
repeatability likelihood functions are obtained conditioned on a set of observed key point
features: peak strength, scale, orientation and distance to the center of image. Details can
be found in [m31396].

Figure 2. AKULA distance metric

AKULA is not a state-less descriptor. Its structure is more like the minutia points based
representation for fingerprint verification. The distance metric for AKULA should reflect
the fact that any permutation of the centroids, should still be a representation of the same
aggregation.  The  distance between two AKULA descriptors,  A1,  and  A2 ,  is  therefore
computed as, 

(2)

Here the forward and backward minimum distances are computed as, 

(3)

(4)



where  the  AKULA  centroids  distances  are  .  The  weights

associated with the forward/backward minimum distances, are computed as, 

(5)

(6)

The AKULA distance metric is very intuitive to understand. The forward and backward
matching process finds the nearest neighbors pairs of the AKULA centroids, and this is
weighted by the number of key points counts associated with them. The Dominant Color
Descriptor  [Manjunath01]  from  the  MPEG-7  standardization  effort  has  a  similar
structure, but having a different distance metric which computes affinity from all distance
pairs involved. 

An example of AKULA distance computing is illustrated in  Fig. 2, where Fig. 2a is a
plot of two AKULA descriptors with  m=16  clusters, plotted on the first 2 dimensional
plane of the feature space, and the z-axis represents the normalized key point counts. The

and   are illustrated in Fig. 2b, and the  pair-wise centroid distance matrix and
weight matrix are shown in Fig. 2c and Fig. 2d respectively.

Overall, the AKULA aggregation bit rate is very compact. For a PCA dimension of d0=8,
and  m=16,  it  requires  only  128  bytes  to  encode.  In  fact  our  AKULA  used  in
benchmarking has a bit rates of 64, 128, and 256 bytes. Similarly performing state-of-art
aggregation  schemes  like  Fisher  Vector,  in  contrast,  requireing 256  to  1024  bytes.
AKULA is a much better aggregation scheme in terms of compression efficiency. 

Simulation Results
The MPEG working group under  the  ISO is  developing an international  standard on
image query compression for mobile visual search over the wireless channels, it is called
Compact Descriptor for Visual Search (CDVS) [W13564]. A large data set is collected
for this  standardization effort,  it  consists  of approximately  36000 labeled images  and
more than 1 million unlabeled images from various sources including CD/DVD cover,
books, building and landmarks, video clips, paintings and prints. Some samples from the
CDVS data set are shown in Fig. 3. 

The performance of the AKULA in image matching is benchmarked against the current
state of the art, i.e,  the Fisher Vector approach. There are approximately a total of 186K
labeled image matching ground truth items, organized into five data sets shown in Table
I. 

Table I. CDVS data set
Data Set 1a, 1b 2 3 4 5

Content Graphics,
CD/Books

Paintings Video
Frames

Buildings/
Landmark

Common
Objects

The True Positive Rate (TPR) and the False Positive Rate (FPR), are defined as, 



The image matching performance as TPR(FPR) are plotted in the Figs 4a ~4f below, for
the data sets 1a, 1b, 2, 3, 4, and 5. For the data set 1a and 1b, which consist of book and
CD covers taken at different angles and illumination conditions, the AKULA starts to
outperform the Fisher Vector for FPR greater than 10%, which for data set 2, 3, which
are  museum  paintings,  randomly  selected  video  frames,  AKULA  consistently
outperforms Fisher Vector throughout all FPR operating ranges. For data set 4 and 5,
which include images of  3D objects that having much larger variations in object position
and  extrinsic/intrinsic  camera  parameters  in  image  formation,  the  performance  of
AKULA is even better. This points to the strength of the AKULA aggregation scheme,
which  not  only  achieve  better  compactness  in aggregation,  but  also  delivers  better
performance in aggregation-descriptor only image matching performances.

Figure 3. CDVS Data set

In Fig. 4, the red dotted plots are the AKULA TPR-FPR curves at bit rate 64, 128 and
256 bytes, for d0=8, and m=8, 16 and 32. The blue and black curves are the Fisher Vector



TPR-FPR performances at 256 and 512 bytes, for the same dimensionality and with 32
and  64  GMM  components.  The  Fisher  Vector  is  implemented  with  the  VL_FEAT
package  [Vedaldi10].  To  have  a  fair  comparison,  the  Fisher  Vector  and  AKULA
aggregation  schemes are fed with  exactly  the  same set  of  SIFT key points  from the
image. After initial detection of SIFT points in an image, the key points are sorted by the
peak strength, and only the top k=300 SIFT points are selected for the aggregation. 

Notice  that  AKULA  is  not  a  state-less  descriptor,  like  Fisher  Vector,  where  the
description can be easily binarized for fast comparison. Any permutations of AKULA
centroids and associated key point counts, are still valid AKULA description of the same
image, and should return zero-distance among them. 

(a)                                                                                (b)

(c)                                                                           (d)



(e)                                                                                (f)

Figure 4: AKULA vs Fisher Vector in Image Matching 

The AKULA performs well in data sets 2,3,4 and 5 across all FPR ranges, while for data
set 1, the Fisher Vector performs better at below 10% FPR range. Overall, AKULA is
offering a better image matching performance while operates at much smaller bit rate. 

Notice that the key points are not involved in the image matching, only the aggregated
information is used. This puts the compression ratio of the visual query for a typical
60KB VGA size JPEG image at 250~1000 times. 

The AKULA aggregation scheme is also integrated into the MPEG CDVS test model
[m31491], it operates at 64, 128 and 256 bytes as discussed, and performs well compared
with a much larger bit rate (280~980 bytes) binarized Fisher Vector type aggregation
scheme [Duan13]. The GD operating rates are summarized in Table II, for CDVS rates
between 0.5 ~ 16K bytes:

Table II. Aggregation Rates 
Rate 512 1K 2K 4K 8K 16K

Fisher  Vec
Rate

276 292 319 621 731 804

AKULA
Rate

64 128 128 128 256 256

The overall  image matching performance is matched up, while the saving in bit rates
significantly improved the object  localization performance,  especially  at  the lower bit
rates, as illustrated in the Fig. 5,



Figure 5. Localization Accuracy

The red curve is  the localization  accuracy for AKULA integrated  solution,  while  the
black curve is  that  of  the Fisher  Vector.   The significant  gains  at  the lower rates  of
matching, can be very valuable for applications where low rates operation are mandated. 

Conclusion and Future Work
Visual identification and search is becoming a key enabler for a variety of important
applications  in mobile computing.  In this work, we presented a novel local key point
feature  aggregation  scheme that  is  compact  in  resulting  visual  query  bit  rates,  while
offering state-of-art performance in image matching. In the future further optimization
will be performed on the distance metric tuning, introducing heat kernel mappings that
can adapt the metric to better reflects the true potential of this approach. 

Furthermore, an outer loop of optimization is to be introduced to optimizes the subspaces
where  this  aggregation  is  performed.  Ideas  and frameworks  from the  Complimentary
Hashing work [Xu11] and Grassmannian  Hashing [Wang11]  are being adopted for this
purpose, and further performance gains are expected. 
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