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Research Interests:

« Immersive Media Communication: light field, point cloud and 360
video capture, coding and low latency communication.

« Data & Image Compression: video, medical volumetric data, DNA |
sequence, and graph signal compression with deep learning l NSF I/UCRC Center for Big Learning

* Remote Sensing & Vision: vision problem under low resolution, -
blur, and dark conditions, hyperspectral imaging, sensor fusion

 Edge Computing & Federated Learning: gradient compression,
light weight inference engine, retina features, fast edge cache for
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Data & Image Compression Highlights (NSEF/IUCRC)

“Neural Network Based Cross-Channel Intra Prediction”, ACM Trans on Multimedia
Computing Communication and Applications (TOMM), 2021.
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+ “Compression Priors Assisted Convolutional Neural Network for Fractional
Interpolation”, IEEE Trans on Circuits and Systems for Video Tech. (T-CSVT), 2020
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Edge Media Computing & Federated Learning

"Referenceless Rate-Distortion Modeling with Learning from Bitstream and Pixel
Features" ACM Multlmedla (MM), Seattle, 2020.
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“Scalable Hash From Triplet Loss Feature Aggregation for Video De-Duplication”,
Journal of Visual Communication & Image Representation (JVCIR), 2020.
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Immersive Media Coding & Communication (NSF/IUCRC)
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47““GfaphSIl\/( Inferrmg Point Cloud Quality via Graph Similarity”, IEEE Trans on Pattern Analysis &
Machine Intelligence (T-PAMI), 2021.

"Efficient Projected Frame Padding for Video-based Point Cloud Compression", IEEE Trans on
Multimedia(T-MM), 2020.

"Rate Control for Video-based Point Cloud Compression", IEEE Transactions on Image Processing (T-
IP), 2020.

"A-domain Perceptual Rate Control for 360-degree Video Compression", IEEE Journal of Selected
Topics in Signal Processing (JSTSP), 2020.

"Advanced 3D Motion Prediction for Video Based Dynamci Point Cloud Compression", /EEE Trans on
Image Processing(T-IP), 2019.

"Quadtree-based Coding Framework for High Density Camera Array based Light Field Image", IEEE
Trans on Circuits and Systems for Video Tech(T-CSVT), 2019.

"Advanced Spherical Motion Model and Local Padding for 360 Video Compression", IEEE Trans on
Image Processing (T-1P) vol. 28, no. 5, pp. 2342-2356, May 2019.

“Scalable Point Cloud Geometry Coding with Binary Tree Embedded Quadtree”, IEEE Int'| Conf. on
Multimedia & Expo (ICME) ,San Diego, USA, 2018.

“Pseudo sequence based 2-D hierarchical coding structure for light-field image compression”, IEEE
Journal of Selected Topics in Signal Processing (JSTSP), Special Issue on Light Field, 2017.
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Outline

« Scalable Point Cloud Geometry Compression

Z. Li, UMKC

7.7



What 1s Point Cloud

* A collection of Un-ordered points with
— Geometry: expressed as [X, Y, Z]
— Color Attributes: [r g b], or [y u V]
— Additional info: normal, timestamp, ...etc.

« Key difference from mesh: no order or local topology
Info

Z. Li, UMKC



Point Cloud Capture

« Passive: Camera array stereo depth senso
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Point Cloud Inter-Operability with Other Formats

* Provide true 6-DoF Content capacity

(Super) Multi View light-field

LT
ray tracing and {«”\
.‘fﬂ‘-. 3

plane intersection

B

-"‘[‘

1

collect rays
select a
view
compute . .
: - compute point position compute rays from
disparity . ) o
capture from ray/beam intersection lighting model or angle-
more dependent colors

views!

remove depth
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PCC in MPEG

« Part of the MPEG-Immersive grand vision
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Octree Based Point Cloud Compression

* OQctree is a space partition solution
— lteratively partition the space into sub-blocks.
— Encoding: 0 if empty, 1 if contains data points
— Level of the tree controls the quantization error
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Credit: Phil Chou, PacketVideo 2016
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Lossless Compression of the Octree with Neural

Network driven CABAC
- Tree Structure: 1 L]
— DFS scanning of the Octree node byte to have a ’—l : -l'fj
byte stream [ = [-]<]
— Compression of the byte stream via Arithmetic [ -]
Coding, or shallow neural network PAQ coding

against a ref point (eg., centroids of
octree leaf node centroids)

Residual Coding:

— Range coding: coding the residual

— Plane/Surface approximation coding:

compute the projection distances to a surface,

surface can be polynomial or planar.

Z. Li, UMKC
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Scalable Point Cloud Geometry Coding

« Binary Tree embedded Quadtree (BTQT) coding
(adopted in MPEG gPCC):

— Binary tree partition to have lossy geometry approximation

— Refine each leaf node with Quadtree/Octree to offer scalable
_ details upto En.ggr“lc‘)ésless

R \:w\\\\\ﬁ{\\‘f'
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Scalable Geometry Coding with BTQT

* Construct Binary Tree of Point Cloud

« R, =(2-1)*(2+K) + 6*K, cost of signalling for
resolution K bits and binary tree depth L

« Intra-Coding i.e. either Quadtree (flat surface) or
Octree(not flat)

QT case overhead: R, = 3*p + 3*q bits, for singalling
norma at p bits and point at q bits. q < K proportional
to the leaf node size.

depth:1 . depth:3

& > A ) o N a ) o0
: : : : ) : ! ]
(=]

-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

Z. Li, UMKC

p.15



eig(cov(X))

Octree
A =

A1+ Ao+ A3

Quadtree/Octree Mode Decision
A3

Quadtree
ian

ter

Flatness Cr

ofofelclololNG

=
-
-
(=]
(<)
[=]
-
28 3 8 8 8 8§ 3 § ]
o [ o~ o~ o~ o~ ﬂ m o~ ﬂ H
i
X x| x| x
0 *
Melm | x| REx] %[ %
. : .
) 0 O
IEA EIREAR AR R A
| . III -
R EAEAE AT B S
2w x| %17 o | % | %
| Bl Bl 3 B = !
r
X4 | % R x| %X
*
x* w x| x
"
x poe | | x
o
*
¥ RAR S
M i .
X | x4 x W.«.x.%.x-
0 L T
B R i S
s » |*
O B -
K| EAE AR
.
5 raE d ey x| % "%
. .
* T
x| ol | o] x *®
. |

p.16

Z. Li, UMKC



Scalable Coding with Quadtree/Octree

275

L=L2<L1

L=L3<L2
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Point cloud Visualization

 citytunnel dataset (MERL) - 1.5 km long section

of a
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Result: Category 1 Geometry Coding Efficiency
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Reconstructed-Zoomed

» Various reconstruction accuracy:

Z. Li, UMKC 0.20



Outline

* Video Projection Based Point Cloud Compression
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Video-based point cloud compression

« Basic steps
— Normal-based projection, frame packing, and frame padding

* Normal-based projection
— Organize the points with similar normal into a patch

— Project each patch to the 3D point cloud bounding box

Patch 2D
ding b
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A |
Patch 3D
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—1 5 Point cloud 3D
~
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Video-based point cloud compression

 Frame packing: pack the patches into frames
— Exhaustive search empty space for the current patch
— Patch rotation is supported
— Introduced a lot of sharp edges

Z. Li, UMKC
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VPCC - Texture Padding

« Texture padding: a number of methods are proposed to
minimize the bitrate of the unoccupied pixels

« Using push-pull algorithm as an example, like dilation

Z. Li, UMKC
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Video-based point cloud compression

« Basic idea: project a point cloud to a 2-D video for an
efficient compression (demo)

Geometry

Z. Li, UMKC 0.25



VPCC Motion Model

* The corresponding patches may be put in totally
different positions in various frames (Green squares)

— The current video codec may be unable to find a good motion
vector for each block in this case

— The geometry is encoded before the attribute, we can use the
geometry to derive a better motion vector for attribute

Z. Li, UMKC
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General 3D to 2D motion model

« Given the 3D motion and the 3D to 2D correspondence,
we can derive the 2D motion
— g(), f(): 3D to 2D projection in reference and current frames

MY, = gl 185, Y8, 235 ) — T38:, 18, 235)

Z. Li, UMKC 0.27



Geometry-based motion prediction

* In the V-PCC, we know the 3D-to-
2D correspondence but do not know
the 3D motion

« We assume the current frame and
the reference frame will not change
dramatically

MVE,. = g(x3:,y3¢, 23:) — f(x3c,y3¢, 23c)

* The problem is that (x3c,y3c,z3c)
may not have a corresponding 2D
point in the reference frame

— We perform motion estimation which
will increase the encoder and decoder
complexity

Z. Li, UMKC
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Auxiliary information based motion prediction

 The previous method has the
following two disadvantages |
— The high encoder and decoder @

complexity El

— It can only apply to the attribute %

0,0,0) /g
MV E3D

« The auxiliary information
based motion prediction
— The auxiliary information

basically provides the coarse
geometry

— We use the 3D offset plus the
2D offset

Z. Li, UMKC p.29



Experiments setup

« The proposed algorithm is implemented in the V-PCC
reference software and the corresponding HEVC
reference software

« We test the all the dynamic point clouds defined in the
common test condition including loot, redandblack,
soldier, queen, longdress

* For the geometry, both point-to-point is point-to-plane
are used

* For the attribute, the qualities of the luma, Cb, and Cr
are considered

Z. Li, UMKC p.30



Experimental results on the overall scheme

 QOverall scheme results
TABLE III
PERFORMANCE OF THE GEOMETRY-BASED MOTION PREDICTION COMPARED WITH THE V-PCC ANCHOR
Test Geom.BD-GeomRate AttrBD-AurRate Geom.BD-TotalRate Attr.BD-TotalR ate
point cloud D1 D2 Luma Cb CE D1 D2 Luma Cb Cr
Loot 0.0% 0.0% —18.1% 314% -304% | -34% —6.1% —84% -177% -16.9%
RedAndBlack 0.0% 0.0% -16.3% -25.0% -159% | —4.6% —4.6% -8.8% -154% —8.49%
Solider 0.0% 0.0% —33.4% 42.5% -43.2% | -8.2% —8.2% —17.2% -263% -27.0%
Queen 0.0% 0.0% —13.7% -20.5% -19.2% | -3.5% -3.6% -1.8% -127% -11.6%
LongDress 0.0% 0.0% a4 28 o 380 w2300 3. e =3l B4 o A5G o 84D
Avg. 0.0% 0.0% Il -18.2% -26.6% -242% | —4.7% —4.7% 07% -163% -145% |
Enc. time self - EEE_—_——— g = EEEEmEm_-—_——
Dec. time self 98%
Enc. time child 486%
Dec. time child 337%
TABLE IV
PERFORMANCE OF THE AUXILIARY-INFORMATION-BASED MOTION PREDICTION COMPARED WITH THE V-PCC ANCHOR UNDER THE NORMATIVE
SOLUTION
Test Geom.BD-GeomRate Attr BD-AttrRate Geom.BD-TotalRate Attr. BD-TotalRate
point cloud D1 D2 Luma Cb Cr D1 D2 Luma Cb Cr
Loot —4.0% —3.9% -16.3% -264% -28.5% —6.3% —6.2% -9.6% -167% -17.9%
RedAndBlack -1.0% -1.1% -12.2% -189% -10.9% —4.0% —4.1% -12% -12.1% —6.2%
Solider —8.0% -1.9% -31.3% 41.4% -404% | -13.6% —13.4% -19.8% -28.7% -28.1%
Queen -5.9% -5.9% -11.8% -17.0% -157% -1.3% -1.3% -9.1%  -129% -11.8%
LongDress -1.1% -1.1% e 83 % k] 20 e w02t ) B B i e B T e 8.2 = ] BT
Avg. —4.0% —40% | -16.0% -23.0% -21.1% ~1.0% -6.9% —103% —-157% -143% |
Enc. timesett | T T T T T == =7 m%e - - - - - - T T ===
Dec. time self 100%
Enc. time child 98%
Dec. time child 994
Z. Li, UMKC 0.31



Performance Analysis

 Intra blocks reduce significantly, resulting in taking adv
of inter coding efficiency

(a) Soldier Geometry Anchor (b) Soldier Geometry Normative (c) Soldier Geometry Non-normative

(d) Soldier Geometry Anchor (e) Soldier Geometry Normative (f) Soldier Geometry Non-normative

Z. Li, UMKC
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Subjective quality

Anchor Proposed

Z. Li, UMKC
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Occupancy Map Driven Rate-Distortion Optimization

* The current rate distortion optimization process in a video

encoder such as HM is not handling the unoccupied

pixels in a proper way

N
m};nJ:ZD?;—F)\R

1—1

4

For a block with both occupied
and unoccupied pixels, all the
pixels are treated as equal
importance

Z. Li, UMKC
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Proposed occupancy-map-based RDO

« The unoccupied pixels are not beneficial for the
reconstructed quality of the point cloud at all

* In the proposed solution, a distortion mask is added in the
RDO to handle the unoccupied pixels

N
minJ = Y D; x M; + AR

g .
=1

where M is 1 when the current pixel is occupied, M, is 0
when the current pixel is unoccupied

« This method is applied to intra/inter prediction and SAO

Z. Li, UMKC p.35



Intra prediction

« The RDO in intra prediction can be divided into three
steps
— INTRA Mode (Direction) Decision

» The occupancy-map-based RDO is not applied as the
residue bits are not counted in the bit cost

N
mPi,n J = Z SATD; 4+ ARg;r

=1

— Precise mode decision and residue Quadtree decision

» The occupancy-map-based RDO is applied as the residue
bits are counted in the bit cost

N
m}%nJ:ZD@- X M; + AR

=l

Z. Li, UMKC p.36



Inter prediction

« The inter mode can be divided into merge 2Nx2N and
the other inter modes
— Merge 2Nx2N/modes comparison

» The occupancy-map-based RDO is applied as the residue
bits are counted in the bit cost

N
m};ngZlDi X M; + AR

— Other inter modes in Integer and fractional motion estimation
processes or merge estimation

» The occupancy-map-based RDO is not applied as the
residue bits are not counted in the bit cost

N
minJ = » | SAD;/SATD; + ARmotion

1=1

Z. Li, UMKC
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Simulation setup

« We implement the proposed algorithm in V-PCC
(TMC2-3.0) and the corresponding HEVC reference
software to verify the performance of the proposed
algorithm

 Follow the common test condition
— Random access case and all intra case

e Test point cloud

Test point Number of | Geometry
Frame rate
cloud points precision

Loot ~780000 10bit
RedAndBlack 30 ~700000 10bit RGB
Soldier 30 ~1500000 10bit RGB
Queen 50 ~1000000 10bit RGB
Longdress 30 ~800000 10bit RGB

Z. Li, UMKC



Experimental results

« Random access case

Test point Geom.BD-Rate Attr.BD-Rate
cloud

D1 D2 Luma Cb Cr

Loot -16.3% -16.4% -24.3% -18.2% -19.3%
RedAndBlac — 6.6% 72%  122% -9.8% -12.3%
Soldier -15.8% -16.0% -16.8% -9.4% -9.0%
Queen -13.4% -13.2% -15.7% -11.2% -10.5%
Longdress -7.5% -7.8% 19% -1.7% -7.2%
Avg. -11.9% -12.1% -15.4% -11.3% -11.7%
Enc. self 101%
Dec. self 99%
Enc. child 88%
Dec. child 88%

Z. Li, UMKC
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Experimental results

 Examples of R-D curves in random access case

Loot D1
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= ved
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Attribute bits Millions
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Outline

« Post-Processing: Point Cloud Scaling

Z. Li, UMKC 41.41



Point Cloud Scaling

« Scaling by voxelization

—

/]

Voxel merging due to quantization Upsample using occupancy prediction

9-bit

Z. Li, UMKC 0.42



Upscaling a point cloud

« Current point cloud lossy compression and processing
schemes suffer from quantization loss which results in a
coarser sub-sampled representation of point cloud.

« We solve the problem of points lost during voxelization
by performing geometry prediction across spatial scale
using deep learning architecture.

« Helpful tool for point cloud compression as well as
display adaptation.

Z. Li, UMKC 0.43



Deep Learning Solution

« Using a SparseNet backbone:
— patch based feature embedding with 3D Unet

— loss function as a voxel octree partition code prediction loss -
8bit binary cross entropy

— different from typical chanfer distance and earth moving
distance loss based and better captures the problem.

Input Output
. patches patches
Input point cloud PPN - Upsampled point cloud
0 Output
— —_—
. cilrjlgancy P
N pu 3D UNet 2 * RN
N > ! C — y N
> —_— —> —> = . ]
f Nx3 Nx8 L7 ' 527, 0
¥ = Nx3 —_— - >
d
» -

Z. Li, UMKC
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3D Unet Design Details

 Including our inception residual block units

— PointCNN/PointNet type backbone not able to handle such
large data set

o — — — — — — — —

-
C input Channels
|

I I

N‘ = I v ’ |

‘?Q it i{l=! I 7 Conv: ’x(C/4) | | |
Input_y JEol™ ~faly, Oupu | ICBRESSEMY [CnviSNC] | |
PC B | 2 PC || Conv:3°x(CR2) | | Conv: Px(C/2) | | |
Oz -z | |

I I

Block 2, C=32 |

[ Block 1, C=64
128 |

Block 1, C=
128
Block 2, C=64

256

-

Block 1, C
=256

C = Channels

D = Output Dimension

|21 = Deconvolution with stride 2
|2} = Downsampling with stride 2
Every convolution is followed by a
Batch Norm and ReLU

Block 2, C

Block 1, C
Block 2, C=256
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Significant Performance Gains over SOTA

« Scaling Performance:

 Compared with current SOTA like PU-Net and similar

TABLE I: Average PSNR (dB) results.

qs Quarllltlipz :‘ti PC Output PC | Difference Im;‘(c;:iz:is; in
4/3 64.6646 73.8630 9.1984 xl.7
2 63.2080 72.0758 8.8678 x3.7
4 58.0077 65.1890 7.1813 x13.8

ones, we have 4~5dB advantage

Z. Li, UMKC
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Subjective Results

(c)
Fig. 5: (a) Original point cloud, (b) Quantized point cloud with gs = 2, (¢) Upsampled point cloud.

(a) (b) (c)
Fig. 6: (a) Original point cloud, (b) Quantized point cloud with ¢gs = 4, (c¢) Upsampled point cloud.

Z. Li, UMKC p.47



Summary

 Immersive Visual Communication can enable many crucial
applications in remote medicine, education, and military use
cases.

« For 3D sensing/Auto-driving, geometry is the key, BTQT is a
good framework with room for entropy coding optimization
(LSTM), and RDO

« vPCC deals with immersive content, current MPEG vPCC has
many in-efficiency, we introduced advanced motion model,
occupancy map based RDO to significantly improve the over
all performance

 Deep learning point cloud geometry super resolution, learn a
large scale feature embedding with a novel octree node
occupany loss function

Z. Li, UMKC p.48



