Point Cloud Compression & Communication

Zhu Li

Director, UMKC NSF Center for Big Learning Dept of Computer Science & Electrical Engineering University of Missouri, Kansas City Email: <u>zhu.li@ieee.org</u>, <u>lizhu@umkc.edu</u> Web: <u>http://l.web.umkc.edu/lizhu</u>

Outline

- Short Self Intro
- Research Motivation and Highlights
- Scalable Point Cloud Geometry Compression
- Video Projection Based Point Cloud Compression
- Post-Processing: Point Cloud Scaling
- Summary
- URL: http://l.web.umkc.edu/lizhu/docs/pccc.pdf

University of Missouri, Kansas City

Research Interests:

- Immersive Media Communication: light field, point cloud and 360 video capture, coding and low latency communication.
- Data & Image Compression: video, medical volumetric data, DNA sequence, and graph signal compression with deep learning
- Remote Sensing & Vision: vision problem under low resolution, blur, and dark conditions, hyperspectral imaging, sensor fusion
- Edge Computing & Federated Learning: gradient compression, light weight inference engine, retina features, fast edge cache for video CDN

signal processing and learning

image understanding

visual communication

NSF I/UCRC Center for Big Learning Creating Intelligence

mobile edge computing & communication

Data & Image Compression Highlights (NSF/IUCRC)

 "Neural Network Based Cross-Channel Intra Prediction", ACM Trans on Multimedia Computing Communication and Applications (TOMM), 2021.

 "Compression Priors Assisted Convolutional Neural Network for Fractional Interpolation", *IEEE Trans on Circuits and Systems for Video Tech*. (T-CSVT), 2020

Edge Media Computing & Federated Learning

 "Referenceless Rate-Distortion Modeling with Learning from Bitstream and Pixel Features", ACM Multimedia (MM), Seattle, 2020.

"Scalable Hash From Triplet Loss Feature Aggregation for Video De-Duplication", Journal of Visual Communication & Image Representation (JVCIR), 2020.

Immersive Media Coding & Communication (NSF/IUCRC)

- "GraphSIM"- Inferring Point Cloud Quality via Graph Similarity", IEEE Trans on Pattern Analysis & Machine Intelligence (T-PAMI), 2021.
- "Efficient Projected Frame Padding for Video-based Point Cloud Compression", *IEEE Trans on Multimedia*(T-MM), 2020.
- "<u>Rate Control for Video-based Point Cloud Compression</u>", *IEEE Transactions on Image Processing* (T-IP), 2020.
- "λ-domain Perceptual Rate Control for 360-degree Video Compression", *IEEE Journal of Selected Topics in Signal Processing* (JSTSP), 2020.
- <u>"Advanced 3D Motion Prediction for Video Based Dynamci Point Cloud Compression</u>", *IEEE Trans on Image Processing*(T-IP), 2019.
- "Quadtree-based Coding Framework for High Density Camera Array based Light Field Image", *IEEE Trans on Circuits and Systems for Video Tech*(T-CSVT), 2019.
- "Advanced Spherical Motion Model and Local Padding for 360 Video Compression", *IEEE Trans on Image Processing* (T-IP) vol. 28, no. 5, pp. 2342-2356, May 2019.
- "Scalable Point Cloud Geometry Coding with Binary Tree Embedded Quadtree", IEEE Int'l Conf. on Multimedia & Expo (ICME), San Diego, USA, 2018.
- "Pseudo sequence based 2-D hierarchical coding structure for light-field image compression", *IEEE Journal of Selected Topics in Signal Processing* (JSTSP), Special Issue on Light Field, 2017.

Outline

- Short Self Intro
- Research Motivation and Highlights
- Scalable Point Cloud Geometry Compression
- Video Projection Based Point Cloud Compression
- Post-Processing: Point Cloud Scaling
- Summary

What is Point Cloud

- A collection of Un-ordered points with
 - Geometry: expressed as [x, y, z]
 - Color Attributes: [r g b], or [y u v]
 - Additional info: normal, timestamp, ...etc.
- Key difference from mesh: no order or local topology info

Point Cloud Capture

Passive: Camera array stereo depth senso

• Active: LiDAR, mmWave, TOF sensors

Point Cloud Inter-Operability with Other Formats

Provide true 6-DoF Content capacity

PCC in MPEG

• Part of the MPEG-Immersive grand vision

Octree Based Point Cloud Compression

- Octree is a space partition solution
 - Iteratively partition the space into sub-blocks.
 - Encoding: 0 if empty, 1 if contains data points
 - Level of the tree controls the quantization error

Credit: Phil Chou, PacketVideo 2016

Lossless Compression of the Octree with Neural Network driven CABAC

- Tree Structure:
 - DFS scanning of the Octree node byte to have a byte stream
 - Compression of the byte stream via Arithmetic Coding, or shallow neural network PAQ coding
- Residual Coding:
 - Range coding: coding the residual against a ref point (eg., centroids of octree leaf node centroids)
 - Plane/Surface approximation coding: compute the projection distances to a surface, surface can be polynomial or planar.

Scalable Point Cloud Geometry Coding

- Binary Tree embedded Quadtree (BTQT) coding (adopted in MPEG gPCC):
 - Binary tree partition to have lossy geometry approximation
 - Refine each leaf node with Quadtree/Octree to offer scalable
 details upto near lossless

Scalable Geometry Coding with BTQT

- Construct Binary Tree of Point Cloud
 - R₁ = (2^L-1)*(2+K) + 6*K, cost of signalling for resolution K bits and binary tree depth L
- Intra-Coding i.e. either Quadtree (flat surface) or Octree(not flat)
 - QT case overhead: R₂ = 3*p + 3*q bits, for singalling norma at p bits and point at q bits. q < K *proportional* to the leaf node size.

Quadtree/Octree Mode Decision

Scalable Coding with Quadtree/Octree

Point cloud Visualization

citytunnel dataset (MERL) – 1.5 km long section of a

Result: Category 1 Geometry Coding Efficiency

Reconstructed-Zoomed

• Various reconstruction accuracy:

Outline

- Short Self Intro
- Research Motivation and Highlights
- Scalable Point Cloud Geometry Compression
- Video Projection Based Point Cloud Compression
- Post-Processing: Point Cloud Scaling
- Summary

Video-based point cloud compression

- Basic steps
 - Normal-based projection, frame packing, and frame padding
- Normal-based projection
 - Organize the points with similar normal into a patch
 - Project each patch to the 3D point cloud bounding box

Video-based point cloud compression

- Frame packing: pack the patches into frames
 - Exhaustive search empty space for the current patch
 - Patch rotation is supported
 - Introduced a lot of sharp edges

VPCC - Texture Padding

- Texture padding: a number of methods are proposed to minimize the bitrate of the unoccupied pixels
- Using push-pull algorithm as an example, like dilation

Video-based point cloud compression

Basic idea: project a point cloud to a 2-D video for an efficient compression (demo)

Geometry

Attribute

VPCC Motion Model

- The corresponding patches may be put in totally different positions in various frames (Green squares)
 - The current video codec may be unable to find a good motion vector for each block in this case
 - The geometry is encoded before the attribute, we can use the geometry to derive a better motion vector for attribute

General 3D to 2D motion model

- Given the 3D motion and the 3D to 2D correspondence, we can derive the 2D motion
 - g(), f(): 3D to 2D projection in reference and current frames $MV_c = g(x3_r, y3_r, z3_r) f(x3_c, y3_c, z3_c)$

Geometry-based motion prediction

- In the V-PCC, we know the 3D-to-2D correspondence but do not know the 3D motion
- We assume the current frame and the reference frame will not change dramatically

$$MVE_{c} = g(x3_{c}, y3_{c}, z3_{c}) - f(x3_{c}, y3_{c}, z3_{c})$$

- The problem is that (x3c,y3c,z3c) may not have a corresponding 2D point in the reference frame
 - We perform motion estimation which will increase the encoder and decoder complexity

Auxiliary information based motion prediction

- The previous method has the following two disadvantages
 - The high encoder and decoder complexity
 - It can only apply to the attribute
- The auxiliary information
 based motion prediction
 - The auxiliary information basically provides the coarse geometry
 - We use the 3D offset plus the 2D offset

Experiments setup

- The proposed algorithm is implemented in the V-PCC reference software and the corresponding HEVC reference software
- We test the all the dynamic point clouds defined in the common test condition including loot, redandblack, soldier, queen, longdress
- For the geometry, both point-to-point is point-to-plane are used
- For the attribute, the qualities of the luma, Cb, and Cr are considered

Experimental results on the overall scheme

• Overall scheme results

 TABLE III

 Performance of the geometry-based motion prediction compared with the V-PCC anchor

Test	Geom.Bl	D-GeomRate	Att	r.BD-AttrR	ate	Geom.BI	D-TotalRate	Att	r.BD-Total	Rate
point cloud	D1	D2	Luma	Cb	Cr	D1	D2	Luma	Cb	Cr
Loot	0.0%	0.0%	-18.1%	-31.4%	-30.4%	-3.4%	-6.1%	-8.4%	-17.7%	-16.9%
RedAndBlack	0.0%	0.0%	-16.3%	-25.0%	-15.9%	-4.6%	-4.6%	-8.8%	-15.4%	-8.4%
Solider	0.0%	0.0%	-33.4%	-42.5%	-43.2%	-8.2%	-8.2%	-17.2%	-26.3%	-27.0%
Queen	0.0%	0.0%	-13.7%	-20.5%	-19.2%	-3.5%	-3.6%	-7.8%	-12.7%	-11.6%
LongDress	0.0%	0.0%	-9.8%	-13.5%	-12 3%	-3.7%	-3.7%	-6.4%	-9.5%	-8.4%
Avg.	0.0%	0.0%	-18.2%	-26.6%	-24.2%	-4.7%	-4.7%	-9.7%	-16.3%	-14.5%
Enc. time self		•			- 97	%				
Dec. time self	98%									
Enc. time child	486%									
Dec. time child	337%									

 TABLE IV

 Performance of the auxiliary-information-based motion prediction compared with the V-PCC anchor under the normative solution

Test	Geom.BD-GeomRate Attr.BD			tr.BD-AttrR	3D-AttrRate Geom.		Geom.BD-TotalRate		Attr.BD-TotalRate	
point cloud	D1	D2	Luma	Cb	Cr	D1	D2	Luma	Cb	Cr
Loot	-4.0%	-3.9%	-16.3%	-26.4%	-28.5%	-6.3%	-6.2%	-9.6%	-16.7%	-17.9%
RedAndBlack	-1.0%	-1.1%	-12.2%	-18.9%	-10.9%	-4.0%	-4.1%	-7.2%	-12.1%	-6.2%
Solider	-8.0%	-7.9%	-31.3%	-41.4%	-40.4%	-13.6%	-13.4%	-19.8%	-28.7%	-28.1%
Queen	-5.9%	-5.9%	-11.8%	-17.0%	-15.7%	-7.3%	-7.3%	-9.1%	-12.9%	-11.8%
LongDress	-1.1%	-1.1%	-8.3%	-11.2%	-10.2%	-3.8%	-3.6%	-5.7%	-8.2%	-7.3%
Avg.	-4.0%	-4.0%	-16.0%	-23.0%	-21.1%	-7.0%	-6.9%	-10.3%	-15.7%	-14.3%
Enc. time self	100%									
Dec. time self	100%									
Enc. time child	98%									
Dec. time child	99%									

Performance Analysis

 Intra blocks reduce significantly, resulting in taking adv of inter coding efficiency

(a) Soldier Geometry Anchor

(b) Soldier Geometry Normative

(d) Soldier Geometry Anchor

(e) Soldier Geometry Normative

(c) Soldier Geometry Non-normative

(f) Soldier Geometry Non-normative

Subjective quality

Anchor

Proposed

Occupancy Map Driven Rate-Distortion Optimization

 The current rate distortion optimization process in a video encoder such as HM is not handling the unoccupied pixels in a proper way

$$\min_{P} J = \sum_{i=1}^{N} D_i + \lambda R$$

For a block with both occupied and unoccupied pixels, all the pixels are treated as equal importance

Proposed occupancy-map-based RDO

- The unoccupied pixels are not beneficial for the reconstructed quality of the point cloud at all
- In the proposed solution, a distortion mask is added in the RDO to handle the unoccupied pixels

$$\min_{P} J = \sum_{i=1}^{N} D_i \times M_i + \lambda R$$

where M_i is 1 when the current pixel is occupied, M_i is 0 when the current pixel is unoccupied

• This method is applied to intra/inter prediction and SAO

Intra prediction

- The RDO in intra prediction can be divided into three steps
 - INTRA Mode (Direction) Decision
 - The occupancy-map-based RDO is **not applied** as the residue bits are not counted in the bit cost

$$\min_{P} J = \sum_{i=1}^{N} SATD_i + \lambda R_{dir}$$

- Precise mode decision and residue Quadtree decision
 - The occupancy-map-based RDO is **applied** as the residue bits are counted in the bit cost

$$\min_{P} J = \sum_{i=1}^{N} D_i \times M_i + \lambda R$$

Inter prediction

- The inter mode can be divided into merge 2Nx2N and the other inter modes
 - Merge 2Nx2N/modes comparison
 - The occupancy-map-based RDO is **applied** as the residue bits are counted in the bit cost

$$\min_{P} J = \sum_{i=1}^{N} D_i \times M_i + \lambda R$$

- Other inter modes in Integer and fractional motion estimation processes or merge estimation
 - The occupancy-map-based RDO is **not applied** as the residue bits are not counted in the bit cost

$$\min_{P} J = \sum_{i=1}^{N} SAD_i / SATD_i + \lambda R_{motion}$$

Simulation setup

- We implement the proposed algorithm in V-PCC (TMC2-3.0) and the corresponding HEVC reference software to verify the performance of the proposed algorithm
- Follow the common test condition
 - Random access case and all intra case
- Test point cloud

Test point cloud	Frame rate	Number of points	Geometry precision	Attributes
Loot	30	~780000	10bit	RGB
RedAndBlack	30	~700000	10bit	RGB
Soldier	30	~1500000	10bit	RGB
Queen	50	~1000000	10bit	RGB
Longdress 30		~800000	10bit	RGB

Experimental results

Random access case

Test point	Geom.E	BD-Rate	Attr.BD-Rate			
cloud	D1	D2	Luma	Cb	Cr	
Loot	-16.3%	-16.4%	-24.3%	-18.2%	-19.3%	
RedAndBlac k	-6.6%	-7.2%	-12.2%	-9.8%	-12.3%	
Soldier	-15.8%	-16.0%	-16.8%	-9.4%	-9.0%	
Queen	-13.4%	-13.2%	-15.7%	-11.2%	-10.5%	
Longdress	-7.5%	-7.8%	-7.9%	-7.7%	-7.2%	
Avg.	-11.9%	-12.1%	-15.4%	-11.3%	-11.7%	
Enc. self		10	1%			
Dec. self	99%					
Enc. child	88%					
Dec. child	88%					

Experimental results

• Examples of R-D curves in random access case

Outline

- Short Self Intro
- Research Motivation and Highlights
- Scalable Point Cloud Geometry Compression
- Video Projection Based Point Cloud Compression
- Post-Processing: Point Cloud Scaling
- Summary

Point Cloud Scaling

Scaling by voxelization

Voxel merging due to quantization

Upsample using occupancy prediction

8-bit

Z. Li, UMKC

Upscaling a point cloud

- Current point cloud lossy compression and processing schemes suffer from quantization loss which results in a coarser sub-sampled representation of point cloud.
- We solve the problem of points lost during voxelization by performing geometry prediction across spatial scale using deep learning architecture.
- Helpful tool for point cloud compression as well as display adaptation.

Deep Learning Solution

- Using a SparseNet backbone:
 - patch based feature embedding with 3D Unet
 - loss function as a voxel octree partition code prediction loss -8bit binary cross entropy
 - different from typical chanfer distance and earth moving distance loss based and better captures the problem.

3D Unet Design Details

- Including our inception residual block units
 - PointCNN/PointNet type backbone not able to handle such large data set

Significant Performance Gains over SOTA

• Scaling Performance:

TABLE I: Average PSNR (dB) results.

qs	Input Quantized PC	Output PC	Difference	Increase in points	
4/3	64.6646	73.8630	<mark>9.1984</mark>	x1.7	
2	63.2080	72.0758	8.8678	x3.7	
4	58.0077	65.1890	7.1813	x13.8	

 Compared with current SOTA like PU-Net and similar ones, we have 4~5dB advantage

Subjective Results

Fig. 5: (a) Original point cloud, (b) Quantized point cloud with qs = 2, (c) Upsampled point cloud.

Fig. 6: (a) Original point cloud, (b) Quantized point cloud with qs = 4, (c) Upsampled point cloud.

Summary

- Immersive Visual Communication can enable many crucial applications in remote medicine, education, and military use cases.
- For 3D sensing/Auto-driving, geometry is the key, BTQT is a good framework with room for entropy coding optimization (LSTM), and RDO
- vPCC deals with immersive content, current MPEG vPCC has many in-efficiency, we introduced advanced motion model, occupancy map based RDO to significantly improve the over all performance
- Deep learning point cloud geometry super resolution, learn a large scale feature embedding with a novel octree node occupany loss function
- Plenoptic (multi-attributes) point cloud coding with light-field like coding scheme, inter-view prediction yields very good results, for even higher quality immersive experience