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Short Bio:

Research Interests:
• Immersive Media Communication: light field, point cloud and 360 

video capture, coding and low latency communication.
• Data & Image Compression: video, medical volumetric data, DNA 

sequence, and graph signal compression with deep learning
• Remote Sensing & Vision: vision problem under low resolution, 

blur, and dark conditions, hyperspectral imaging, sensor fusion
• Edge Computing & Federated Learning: gradient compression, 

light weight inference time engine, retina features, fast edge 
cache for video CDN 

Zhu Li,  
Associate Editor-in-Chief, 
IEEE Trans on Circuits & System for Video Tech (T-CSVT)
Director, NSF Center for Big Learning at UMKC 
Dept of Computer Science & Electrical Engineering 
Univ of Missouri, Kansas City (UMKC)



Multimedia Computing & Communication (MC2) Lab

• MCC Lab@UMKC: FH-261 and FH-262
• Total $3.2m awarded from NSF, AFOSR and ONR, as well as 

various NSF I/UCRC industry members

• Published 30+ journal papers last 3 years in top notch venus 
like: T-IP, T-MM, T-CSVT, T-PAMI, IJCV, TOMM, TGRS. 

• Currently 9 PhD students, 12 GPU workstation and 10 
workstations. 

• Recent PhD graduates: 
– 2 joined ByteDance video codec team
– 1 joined Tuskegee Univ as AP

• Recent Post-docs:
– 1 post-doc joined USTC as faculty
– 1 post-doc now AP with NUIST
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Data & Image Compression Highlights  
• Y. Mei, L. Li, Z. Li, and F. Li, "Learning-Based Scalable Image Compression with Latent-

Feature Reuse and Prediction", IEEE Trans on Multimedia (T-MM), 2021. 

• H. Zhang, L. Song, L. Li, Z. Li, and X.K. Yang“Compression Priors Assisted Convolutional Neural 
Network for Fractional Interpolation”,  IEEE Trans  on Circuits and Systems for Video Tech, 2020
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Remote Sensing & Vision Highlights  
• R. Hang, Z. Li, Q. Liu, P. Ghamisi and S. Bhattacharyya, "Hyperspectral Image Classification with 

Attention Aided CNNs", IEEE Trans. on Geoscience & Remote Sensing (T-GRS), 2020. [Highly Cited]

• R. Hang, Q. Liu, and Z. Li, "Spectral Super-Resolution Network Guided by Intrinsic Properties of 
Hyperspectral Imagery", IEEE Trans on Image Processing (T-IP), 2021
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Attention CNN for Hyperspectral 
Image Classification 

•  Introducing a dual stream 
network architecture with separate 
attention model for spatial and 
spectral feature maps
• Achieving the SOTA 
performance.

PRINET: Spectral Super Resolution
•  Super-resolve hyper-spectral info from RGB 
inputs
• A dual loss network that learn a correlation 
decomposed HSI images
• Achieving the new SOTA performance.



Immersive Media Coding & Communication (NSF/IUCRC) 
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• "PU-Dense: Large Scale Photo-Realistic Point Cloud Upsampling", accepted with IEEE Trans on Image 
Processing (T-IP), 2022.

• "Deep Learning Geometry Compression Artifacts Revomal for Video Based Point Cloud Compression", Int'l 
Journal on Computer Vision (IJCV), 2021.

• "Video-based Point Cloud Compression Artifact Removal", IEEE Trans on Multimedia (T-MM), 2021.
• "Efficient Projected Frame Padding for Video-based Point Cloud Compression", IEEE Trans on Multimedia(T-

MM), 2020.
• "Rate Control for Video-based Point Cloud Compression", IEEE Transactions on Image Processing (T-IP), 

2020.
• "λ-domain Perceptual Rate Control for 360-degree Video Compression", IEEE Journal of Selected Topics in 

Signal Processing (JSTSP), 2020.
• "Advanced 3D Motion Prediction for Video Based Dynamci Point Cloud Compression",  IEEE Trans on Image 

Processing(T-IP), 2019. 
• "Quadtree-based Coding Framework for High Density Camera Array based Light Field Image", IEEE Trans on 

Circuits and Systems for Video Tech(T-CSVT), 2019. 
• "Advanced Spherical Motion Model and Local Padding for 360 Video Compression",  IEEE Trans on Image 

Processing (T-IP) vol. 28, no. 5, pp. 2342-2356, May 2019. 
• “Pseudo sequence based 2-D hierarchical coding structure for light-field image compression”, IEEE Journal of 

Selected Topics in Signal Processing (JSTSP), Special Issue on Light Field, 2017. 



What is Point Cloud 

• A collection of Un-ordered points with 
– Geometry: expressed as [x, y, z]
– Color Attributes: [r g b], or [y u v]
– Additional info: normal, timestamp, …etc.

• Key difference from mesh: no order or local topology 
info 
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Point Cloud Capture

• Passive: Camera array stereo depth sensor

• Active: LiDAR, mmWave, TOF sensors
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Point Cloud Inter-Operability with Other Formats
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• Provide true 6-DoF Content capacity
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PCC in MPEG

• Part of the MPEG-Immersive grand vision
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GPCC

VPCC



Octree Based Point Cloud Compression

•  Octree is a space partition solution
– Iteratively partition the space into sub-blocks. 
– Encoding: 0 if empty, 1 if contains data points
– Level of the tree controls the quantization error
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Credit: Phil Chou, PacketVideo 2016
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Geometry: Octree coding

Octree 
representation

Arithmetic coding

Geometry 
bitstream

Neighbor-Dependent 
Entropy Context

Intra context prediction

Planar mode

QTBT mode

Angular/ Azimuthal mode

Direct coding mode

Voxelized source 
point cloud

(geometry only)

Compact representation Entropy coding

• Octree Context Model is the key for AC efficiency:



Video-based point cloud compression

• Basic steps
– Normal-based projection, frame packing, and frame padding

• Normal-based projection
– Organize the points with similar normal into a patch
– Project each patch to the 3D point cloud bounding box 
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Video-based point cloud compression

• Frame packing: pack the patches into frames
– Exhaustive search empty space for the current patch
– Patch rotation is supported
– Introduced a lot of sharp edges 
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VPCC - Texture Padding

• Texture padding: a number of methods are proposed to 
minimize the bitrate of the unoccupied pixels

• Using push-pull algorithm as an example, like dilation
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Video-based point cloud compression

• Basic idea: project a point cloud to a 2-D video for an 
efficient compression

p.17

Geometry

Attribute
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Point Cloud Upsampling

• A very relevant problem: 
– lack of scan line density from LiDAR
– undersampling of the mesh
– zoom in for more details
– as a coding tool for prediction across scale

• Main Challenges:
– Backbone network limitations (PointNet based): patch based, 

computationally expensive, cannot support deep and large network due to 
memory in-efficiency

– Performance and robustness still lagging: cannot handle large real word 
data like 8i with > 1M points, 

– Overfitting with PointNet, not generalizeable. 
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PU-Dense: Point Cloud Upsampling

• Sparse Convolution Back Bone (Minkowski Engine):
– A fully convolutional geometry upsampling network that is 

translation invariant and has a variable input size.
– Novel Feature Embedding (FE) with Inception-Residual Block 

(IRB) and a 3D Dilated Pyramid Block (3D-DPB)
– Much larger network with more trainable network weights

• New Loss Function:
– Employs memory efficient binary voxel classification / cross-

entropy loss instead of CD
• Memory efficiency:

–  allows processing of millions of points per inference time.
• Robustness:

– Can generalize to different datasets. It doesn’t just work on 
synthetic point clouds but can also work for real-world scanned 
LiDAR based datasets as well as dense photo-realistic point 
clouds.

– Robust against noise. Faster inference time. 
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PU-Dense Architecture
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D0: voxel 
occupancy prob



PU-Dense Architecture

• Overall a U-Net like structure
– Voxilized point cloud representation : limited variations. 
– 3 Downscaling with stride
– increasing feature dimension which encodes occupancy for 23, 

43 ,83 sized cubes. 
– Novel Feature Embedding (more details later)
– Decoding into an occupancy prob function for each voxel 

location via TG-Conv (Transpose Generative Conv) layer
• Loss function:

– instead of Chamfer Distance (CD) loss and other similar 
distance based, we use occupancy prob loss

– Binary Cross Entropy (BCE) : this is the key, CD usually not 
working well. 
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Feature Embedding (FE) Unit
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• FE Units.
– IRB: similar to the inception in image domain, variable kernel 

size
– 3D DPB: use dilation in kernel to improve receptive field size



Data Set

• Training from ShapeNet, testing on 8i and Technicolor
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Performance

• Point CloudUpsampling
– very significant performance gains (5~9dB for 4x and 8x) over previous SOTA 
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Subjective Results

• 8i Sequences 4X upsacling
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Mesh Quality- Synthetic Objects

• Mesh quality from re-genration: 4x and 8x upscaled 
points
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LiDAR data results
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• KITTI: 4x upscaling



Complexity

• Much more network parameters
• But faster inferences
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PU-Dense Summary

• Loss function: Point Cloud Upsampling is about voxel 
occupancy prediction, switching from distance based 
loss to occupancy prob loss is the main break through

• Network backbone: PointNet and variations are limited 
in efficiency and performance, sparse conv network 
backbones like Minkowski Engine allows for much 
larger data set and deeper network, lead to significantly 
better performance

• New SOTA: This sparse conv backbone + occupancy 
prob loss framework gives us new performance in a 
variety of problems, including, upsampling, denoising 
(next topic), and inter-prediction coding*.
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VPCC Motion Model

• The corresponding patches may be put in totally 
different positions in various frames (Green squares)
– The current video codec may be unable to find a good motion 

vector for each block in this case
– The geometry is encoded before the attribute, we can use the 

geometry to derive a better motion vector for attribute
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General 3D to 2D motion model
• Given the 3D motion and the 3D to 2D correspondence, 

we can derive the 2D motion
– g(), f(): 3D to 2D projection in reference and current frames
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3D Geometry-based motion prediction

• In the V-PCC, we know the 3D-to-
2D correspondence but do not know 
the 3D motion

• We assume the current frame and 
the reference frame will not change 
dramatically

• The problem is that (x3c,y3c,z3c) 
may not have a corresponding 2D 
point in the reference frame
– We perform motion estimation which 

will increase the encoder and decoder 
complexity
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Auxiliary information based motion prediction

• The previous method has the 
following two disadvantages
– The high encoder and decoder 

complexity
– It can only apply to the attribute

• The auxiliary information 
based motion prediction
– The auxiliary information 

basically provides the coarse 
geometry

– We use the 3D offset plus the 
2D offset
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Experiments setup

• The proposed algorithm is implemented in the V-PCC 
reference software and the corresponding HEVC 
reference software

• We test the all the dynamic point clouds defined in the 
common test condition including loot, redandblack, 
soldier, queen, longdress

• For the geometry, both point-to-point is point-to-plane 
are used

• For the attribute, the qualities of the luma, Cb, and Cr 
are considered
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Experimental results on the overall scheme

• Overall scheme results: 3D motion vs SEI messaging
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Performance Analysis

• Intra blocks (in red) reduce significantly, resulting in 
taking adv of inter coding efficiency
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Subjective quality
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Anchor Proposed
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Adv 3D Motion for VPCC Summary

• Pain point: motion coherence is destroyed in the VPCC 
projection process, leads to poor motion compensation 
performance

• Key contribution: recover motion coherence in 3D 
domain, and generate a predictor for 2D motion 
estimation and compensation in HEVC codec. 

• Significance: adopted in the VPCC test model. 
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The Geometry in VPCC

• Geometry is projected to 2 layers of depth in VPCC
– mainly used to handle occulation
– coding wise is treated as interleaved sequences

p.42Facebook Talk, Z. Li, 2022

Near (a) and far (b) layer frames in 2-D geometry video



Geometry Recovery from Depth

• VPCC use occupancy map to signal patches, error 
comes from:
– quantization loss in depth (near and far field)
– as well as the occupancy resolution loss in [Jia21TMM]* (4x4 by 

default) 
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*[Jia21TMM] W. Jia, L. Li, A. Akhtar, Z. Li and S. Liu, "Convolutional Neural Network-based Occupancy 
Map Accuracy Improvement for Video-based Point Cloud Compression," in IEEE Transactions on 
Multimedia, doi: 10.1109/TMM.2021.3079698.



Joint Near and Far Depth Field Denoising

• A dual path network taking in near and far depth field
• Training strategy:

– near field denoising network is trained first
– far field benefit from denoised near field input in a pseudo-

motion compensation scheme
– some regularization in loss of near and far depth field 

interaction
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Results

• BD rate for all intra case:
– significant coding gains :)
– while very limited decoding complexity cost 

p.45Facebook Talk, Z. Li, 2022



Subjective Results
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Summary

• Deep Learning is a powerful tool in signal recovery, 
interpolation and prediction.

• Many applications in immersive media (point cloud, light 
field, and 360) compression, sampled a small part of 
our work in these areas. 

• Looking forward to new revolution in compression 
efficiency with deep learning framework. 

• Q&A 
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Thanks
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