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Research Interests:

« Immersive Media Communication: light field, point cloud and 360
video capture, coding and low latency communication.

« Data & Image Compression: video, medical volumetric data, DNA |
sequence, and graph signal compression with deep learning /AR NSF I/UCRC Center for Big Learning
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Data & Image Compression Highlights

Y. Mei, L. Li, Z. Li, and F. Li, "Learning-Based Scalable Image Compression with Latent-
Feature Reuse and Prediction", [EEE Trans on Multimedia (T-MM), 2021.
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« H.Zhang, L. Song, L. Li, Z. Li, and X.K. Yang“Compression Priors Assisted Convolutional Neural
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Remote Sensing & Vision Highlights

« R. Hang, Z. Li, Q. Liu, P. Ghamisi and S. Bhattacharyya, "Hyperspectral Image Classification with
Attention Aided CNNs", /[EEE Trans. on Geoscience & Remote Sensing (T-GRS), 2020.

Attention CNN for Hyperspectral

48 x 11 x 11 32x11x11 64 x5x5 128X 2 %2 20

H:”:> @ﬁ@ :@@ n::>H

Spectral attention
sub-network # F f

Spatial attention {#] (%] "

Image Classification

* Introducing a dual stream

network architecture with separate

o —_— @ﬁ]@ @ﬁl — ::>H//; attention model for spatial and
"

48 x 11 11 3:Zx1ix11 64%5x5 128x2x2 20 SpeCtral feature maps

DD Convolutional layers |:||:| Output layers (# Spectral attention module EI Spatial attention module ° ACthVIng the SOTA

performance.

« R. Hang, Q. Liu, and Z. Li, "Spectral Super-Resolution Network Guided by Intrinsic Properties of
Hyperspectral Imagery", IEEE Trans on Image Processing(T-IP), 2021
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Immersive Media Coding & Communication (NSF/IUCRC)
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"Deep Learning Geometry Compression Artifacts Revomal for Video Based Point Cloud Compression", Int'
Journal on Computer Vision (IJCV), 2021.

*  "Video-based Point Cloud Compression Artifact Removal", IEEE Trans on Multimedia (T-MM), 2021.

«  "Efficient Projected Frame Padding for Video-based Point Cloud Compression", IEEE Trans on Multimedia(T-
MM), 2020.

+ "Rate Control for Video-based Point Cloud Compression", IEEE Transactions on Image Processing (T-IP),
2020.

*  "A-domain Perceptual Rate Control for 360-degree Video Compression", IEEE Journal of Selected Topics in
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, IEEE Trans on Image

*  "Quadtree-based Coding Framework for High Density Camera Array based Light Field Image", IEEE Trans on
Circuits and Systems for Video Tech(T-CSVT), 2019.

«  "Advanced Spherical Motion Model and Local Padding for 360 Video Compression", I[EEE Trans on Image
Processing (T-IP) vol. 28, no. 5, pp. 2342-2356, May 2019.

. “ lable Point ClI metr ing with Bin Tree Em ree”, IEEE Int'l Conf. on
Multimedia & Expo (ICME) ,San Diego, USA, 2018.
+  “Pseudo sequence based 2-D hierarchical coding structure for light-field image compression”, IEEE Journal of

Selected Topics in Signal Processing (JSTSP), Special Issue on Light Field, 2017.
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Edge Media Computing & Federated Learning

+ "Referenceless Rate-Distortion Modeling with Learning from Bitstream and Pixel
Features" ACM Multlmedla (MM), Seattle, 2020.
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« “Scalable Hash From Triplet Loss Feature Aggregation for Video De-Duplication”,
Journal of Visual Communication & Image Representation (JVCIR), 2020.
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What 1s Point Cloud

« A collection of Un-ordered points with
— Geometry: expressed as [X, Y, Z]
— Color Attributes: [r g b], or [y u v]
— Additional info: normal, timestamp, ...etc.

« Key difference from mesh: no order or local topology
Info
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Point Cloud Capture

« Passive: Camera array stereo depth senso
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Point Cloud Inter-Operability with Other Formats

* Provide true 6-DoF Content capacity

(Super) Multi View light-field
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PCC in MPEG

« Part of the MPEG-Immersive grand vision
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Octree Based Point Cloud Compression

« OQOctree is a space partition solution
— lteratively partition the space into sub-blocks.
— Encoding: 0 if empty, 1 if contains data points
— Level of the tree controls the quantization error
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Credit: Phil Chou, PacketVideo 2016
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Deep Learning tools for Point Cloud

« Grid-based architectures:
— Voxelization-based [1][2].
— Projection-based [3][4][5][6].
* Point-based methods (usually involves knn search):
— PointNet [7], PointNet++ [8].
— PointCNN [9].
 New Data Representations:
— Graph CNNs [10][11][12].
— Octree-based CNN [13].

— Sparse CNNs: Submanifold sparse convolutions [14],
SparseConvNet [15], and MinkowskiNet [10]

CityU Talk, 2022

p.13



Video-based point cloud compression

« Basic steps
— Normal-based projection, frame packing, and frame padding

* Normal-based projection
— Organize the points with similar normal into a patch

— Project each patch to the 3D point cloud bounding box
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Video-based point cloud compression

 Frame packing: pack the patches into frames
— Exhaustive search empty space for the current patch
— Patch rotation is supported
— Introduced a lot of sharp edges

CityU Talk, 2022

p.15



VPCC - Texture Padding

« Texture padding: a number of methods are proposed to
minimize the bitrate of the unoccupied pixels

« Using push-pull algorithm as an example, like dilation
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p.16



Video-based point cloud compression

« Basic idea: project a point cloud to a 2-D video for an
efficient compression

Geomet
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Outline

« Sparse Conv Engine Based PCC
— PU-Dense: point cloud upscaling work (T-IP)
— Compression artifacts removal (T-MM)

CityU Talk, 2022 18.18



PU-Dense

PU-Dense: Sparse Tensor-based Point Cloud
Geometry Upsampling

Anique Akhtar, Student Member, IEEE, Zhu Li, Senior Member, IEEE,
Geert Van der Auwera, Senior Member, IEEE, 1.1 Li, Member, IEEE, Jianle Chen, Senior Member, IEEE,

Project Page:
https://aniqueakhtar.github.io/publications/PU-Dense/

Code:
https://github.com/aniqueakhtar/PointCloudUpsampling

CityU Talk, 2022 0.19



Point Cloud Upsampling

* A very relevant problem:
— lack of scan line density from LiDAR
— undersampling of the mesh
— zoom in for more details

« Summary of current SOTA:

PU-Net [17]: Based on PointNet++

EC-Net [18]: An edge-aware model by adding point-to-edge distance loss.
However, have to manually label the dataset for training.

PPPU or 3PU [19]: Patch-based upsampling. Employs a cascaded 2x
upsampling networks.

PU-GAN [20]: Implemented a GAN.

PUGeo-Net [21]: Geometric-centric approach.

PU-GCN [22]: Multi-level feature extraction using an inception-based graph
convolutional network. They employ shuffling rather than duplicating features
to expand the feature space for upsampling.

Others: [23~25]

CityU Talk, 2022
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Main Issues

« Backbone network limitations (PointNet based)

— Patch-based solutions, usually limited to a fix and small number
of points input (between few hundreds to few thousands.)

— Computationally intensive and memory hogging loss functions
(e.g. Chamfer Distance).

— Shallower networks with smaller receptive fields that limit their
discriminative power and learning ability.

— Extensive pre and post processing required. (Farthest point
sampling and kNN search)
* Performance and robustness still lagging:
— Not able to have deep architecture and large receptive field
— Cannot handle large scale data set like 8i with > 1M points
— Overfitting with PointNet

CityU Talk, 2022
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PU-Dense: Point Cloud Upsampling

« Sparse Convolution Back Bone (Minkowski Engine):

— A fully convolutional geometry upsampling network that is
translation invariant and has a variable input size.

— Novel Feature Embedding (FE) with Inception-Residual Block
(IRB) and a 3D Dilated Pyramid Block (3D-DPB)

— Much larger network with more trainable network weights
 New Loss Function:

— Employs memory efficient binary voxel classification / cross-
entropy loss instead of CD

« Memory efficiency:
— allows processing of millions of points per inference time.
* Robustness:

— Can generalize to different datasets. It doesn’t just work on
synthetic point clouds but can also work for real-world scanned
LIDAR based datasets as well as dense photo-realistic point
clouds.

— Robust against noise. Faster inference time.

CityU Talk, 2022



PU-Dense Architecture
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PU-Dense Architecture

* Overall an U-net like structure
— Voxilzed point cloud representation : limited variations.
— 3 Downscaling with stride

— increasing feature dimension which encodes occupancy for 23,
43 83 sized cubes.

— Novel Feature Embedding (more details later)

— Decoding into an occupancy prob function for each voxel
location via TG-Conv (Transpose Generative Conv) layer

 Loss function:

— instead of Chamfer loss and other similar distance based, we
use occupancy prob loss

— Binary Cross Entropy (BCE) : this is the key

CityU Talk, 2022
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Feature Embedding (FE) Unit

* FE Units.

— IRB: similar to the inception in image domain, variable kernel
size
— 3D DPB: use dilation in kernel to improve receptive field size

_______________________________________ -

,
I i : |
| c(l:'lal:ﬁ:lts Inception 3D Dilated I Inception Eh:EIEII; I
: Residual Pyramid Residual I
| Block (IRB) Block (3D-DPB) I Block (IRB) |
l |

I

I

I

| Conv: (C/4)x3°

5 Dilation=12 —__ * §
I

I

I

I

|

Conv: (C/2)x1°

A e el e e Tl - T ™ .
I_ ( Conv: (C/4)x1? —— ) :
. v 3 ) ) 3 Conv: (C/4)x3’ |
Conv: (C/4)x3 Conv: (C/4)x1 Dilation=6 _— |
Conv: (C/2)x3’ Conv: (C/4)x3’ |
I
I

Conv: (C/4)x3*

Dilation=18 » Conv: Cx1°  —}

I

F('::J I;?Eig —» Broadcast —» |

- e i st A )
Inception-Residual Block (IRB) 3D Dilated Pyramid Block (3D-DPB)

CityU Talk, 2022



Data Set

« Training from ShapeNet, testing on 8i and Technicolor

fiavs

(1) Longdress (i1) Loot (iif) Red and black (iv) Soldier (i) Boxer (i) Thaidancer (i) Queen

(a) 8iVFB v2 (b) 8iVSLF (¢) Technicolor

s

(d) ShapeNet
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Performance

« Point CloudUpsampling

— very significant performance gains over previous SOTA

TABLE II
EXTENDED COMPARATIVE RESULTS (CD (10~ 2) AND PSNR).

. 4x 8x
Pitaset Upsampling
Method CD (10—2) | MSE PSNR (dB) CD (10-2) | MSE PSNR (dB) 1
Downsampled PC 108.18 64.63 199.94 61.96
ShapeNet  3PU 76.36 68.65 149.20 65.37
PU-GAN 49.41 70.64 174.58 64.88
PU-Dense 18.82 75.24 30.52 73.11
Downsampled PC 114.63 64.38 22291 61.49
8iVFB 3PU 67.04 69.41 105.43 66.83
PU-GAN 45.60 70.92 117.66 66.19
PU-Dense 19.38 75.05 33.18 72.57
Downsampled PC 286.67 73.17 600.34 70.00
8iVSLF 3PU 204.92 76.98 368.63 74.78
PU-GAN 156.94 77.18 231.39 75.34
PU-Dense 13541 78.92 202.82 76.79
Downsampled PC 106.69 64.69 196.46 62.04
Queen 3PU 57.13 70.19 90.90 67.55
PU-GAN 41.67 71.43 110.42 66.36
PU-Dense 15.76 75.93 2545 73.76
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Subjective Results

« 8i Sequences 4X upsacling

Point cloud geometry
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Mesh Quality- Synthetic Objects

 Mesh quality from re-genration: 4x and 8x upscaled

4

4x Upsampling

8x Upsampling

PU-Dense

Ground Truth
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Mesh Quality - Real World

4x upscaled points
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LiDAR data results

* KITTI: 4x upscaling

Ciround Truth PU-Dense {Curs) PU-GAN aruy
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Robustness to Noise

« Adding noises to the low resolution point cloud:

4x Upsampling

8x Upsampling

(al) (b1) (a2) (b2) (c2)

Visual results for PU-Dense on noisy data for 4x and 8x upsampling.
Left: (al), (bl), and (c1) are the sparse inputs with 0%, 1%, and 2% Gaussian noise, respectively.
Right: (a2), (b2), and (c2) are the upsampled results from (al), (bl), and (c1) respectively.
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Complexity

 Much more network parameters
« But faster inferences

TABLE IV
QUANTITATIVE COMPARISON: AVERAGE EVALUATION TIME PER POINT
CLOUD FOR 4X UPSAMPLING.

Dataset ~ Upsampling Method  Computation time (min)

3P 27.49
8iVFB PU-GAN 24.78
PU-Dense 00.79

TABLE V

QUANTITATIVE COMPARISON: NUMBER OF TRAINABLE PARAMETERS.

Upsampling Method  Trainable parameters

3PU 152,054
PU-GAN 541,601
PU-Dense 13,172,441

CityU Talk, 2022 0.33
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PU-Dense Summary

* Loss function: Point Cloud Upsampling is about voxel
occupancy prediction, switching from distance based
loss to occupancy prob loss is the main break through

* Network backbone: PointNet and variations are limited
in efficiency and performance, sparse conv network
backbones like Minkowski Engine allows for much
larger data set and deeper network, lead to significantly
better performance

* New SOTA: This sparse conv backbone + occupancy
prob loss framework gives us new performance in a
variety of problems, including, upsampling, denoising
(next topic), and inter-prediction coding’.

‘Anique Akhtar, Zhu Li, Geert Van der Auwera, Jianle Chen, "Dynamic Point Cloud Interpolation”,
in IEEE Int'l Conf on Audio, Speech and Signal Processing (ICASSP), 2022.
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Outline

« Sparse Conv Engine Based PCC

— Compression artifacts removal (T-MM)
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Compression Artifacts Removal

Video-based Point Cloud Compression Artifact
Removal

Anique Akhtar, Student Member, IEEE, Wen Gao, L1 L1, Member, IEEE, Zhu L1, Senior Member, IEEE
Wei lia, Student Member, IEEE, Shan Liu, Senior Member, IEEE

@ARTICLE{8786879,

author={Li, Li and Li, Zhu and Zakharchenko, Vladyslav
and Chen, Jianle and Li, Hougiang},

journal={IEEE Transactions on Image Processing},

titte={Advanced 3D Motion Prediction for Video-Based
Dynamic Point Cloud Compression},

year={2020},

volume={29},

number={},

pages={289-302},

doi={10.1109/T1P.2019.2931621}}
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Point Cloud Compression Artifact Removal

« Distortion from VPCC based coding

« V-PCC is the current state-of-the-art
in dynamic point cloud compression.

« This work proposes the first deep-
learning-based geometry artifact
removal algorithm for the V-PCC - B
standard for dynamic point clouds. g f,“;;'\ Y

Y ;f'fiﬁtm:‘;.‘ '
Ll " S AR

* Ours is a pioneering work in V-PCC
artifact removal without any extra

. Blocking effects in a point cloud coded at
bandwidth to the V-PCC standard. different bitrates using V-PCC encoding.

(a) High-bit rate (b) Low-bit rate
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Geometry Distortion in V-PCC

 V-PCC is based on the projection
of the point cloud patches to 2D
planes and encoding the sequence
as 2D texture and geometry patch
sequences.

« Afterward, these projected video
frames are encoded by leveraging
video compression techniques.
Since these compression
techniques are lossy, compression
artifacts are often introduced due
to quantization noise affecting the
point cloud geometry.
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Loss Function Design

 We observe that the geometry distortion
of the V-PCC reconstructed point cloud }
exists only in the direction of the V-PCC -
projection. T

 We exploit this prior knowledge to learn

both the direction and level of quantization -)§<.
noise by limiting the degree of freedom of - R
the learned noise. TS Ny

T —
“\\’/—"/

(b) V-PCC quantization
noise.
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Network Architecture
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UNet Like Network Architecture
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Sampling & Aggregation

We employ farthest point sampling (FPS) to sample points on the noisy
point cloud and then extract cube patches around the sampled points.

(a) Dense Surface. (b) Sparse Surface.

Fig. Patch correspondence mismatch problem for k = 61.
The k-NN search covers a smaller surface on a denser point
cloud as compared to a sparser point cloud.
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Fig. An example sampling and aggregation scheme.
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Artifact Removal: Simulation Results

Bitrate label

Actual bitrate

brl
br2
br3

0.01866 bpp
0.01632 bpp
0.01502 bpp

Table 1. Bitrates used in simulation

PSNR (dB) Hausdorff PSNR (dB)
Bitrate | Noisy PC  Cleaned PC | Noisy PC  Cleaned PC
br3 59.62 60.47 3702 3721
br2 61.84 62.36 39.58 39.64
brl 64.20 64.53 41.15 41.20
BD-rate savings: 113 %

Table 2. Average PSNR results

PSNR (dB)

Test PC Bitrate | Noisy PC  Cleaned PC  Improvement
Queen br3 60.23 60.79 0.56
br2 62.35 62.90 0.55
brl 64.94 65.21 G27
RedAndBlack br3 59.44 60.38 0.94
br2 61.62 62.18 0.56
brl 63.90 64.27 0.37
Soldier br3 59.20 60.25 1.05
br2 61.53 62.01 0.48
brl 63.76 64.12 0.36

Table 3. Simulation results for each individual sequence

CityU Talk, 2022
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Artifact Removal: Visual Results

Point cloud geometry

P2point error map

T

Ground Truth Bitrate brl Artifact-removed Bitrate br2 Artifact-removed Bitrate br3 Artifact-removed
PC: brl PC: br2 PC: br3
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Artifact Removal: Visual Results

Point cloud geometry

P2point error map

= - -

Ground Truth Bitrate brl Artifact-removed Bitrate br2 Artifact-removed Bitrate br3 Artifact-removed
PC: brl PC: br2 PC: br3
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Artifact Removal: Summary

This work presents a first-of-its-kind deep learning-based point
cloud geometry compression artifact removal framework for V-PCC
encoded dynamic point clouds.

We leverage the prior knowledge that during V-PCC, the
guantization noise is introduced only in the direction of the point
cloud projection.

We employ a 3D sparse convolutional neural network to learn both
the direction and the magnitude of geometry quantization noise.

To make our work scalable, we propose a cube-centered
neighborhood extraction scheme with a sampling and aggregation
method to extract small neighborhood patches from the original
point cloud.

Experimental results show that our method considerably improves
the V-PCC reconstructed point cloud's geometry quality in both
objective evaluations and visual comparisons.

CityU Talk, 2022

47



Outline

* Video based PCC
— Advanced 3D motion for VPCC (T-IP)
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Advanced 3D Motion for VPCC

IEEE TRANSACTIONS ON IMAGE PROCESSING. VOL. 29 2020

Advanced 3D Motion Prediction for Video-Based
Dynamic Point Cloud Compression

Li Li%, Member, IEEE, 7Zhu Li*, Senior Member, IEEE, Vladyslav Zakharchenko, Member, IEEE,
Jianle Chen, Senior Member, IEEE, and Houqiang Li™, Senior Member, IEEE

@ARTICLE{Li20TMM, o
author={Li, Li and Li, Zhu and Zakharchenko, Vladyslav and Chen,
Jianle and Li, Houqgiang},
journal={IEEE Transactions on Image Processing},

titte={Advanced 3D Motion Prediction for Video-Based Dynamic
Point Cloud Compression},

year={2020},
volume={29},
number={},
pages={289-302},

doi={10.1109/TIP.2019.2931621}} B
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VPCC Motion Model

* The corresponding patches may be put in totally
different positions in various frames (Green squares)

— The current video codec may be unable to find a good motion
vector for each block in this case

— The geometry is encoded before the attribute, we can use the
geometry to derive a better motion vector for attribute

CityU Talk, 2022
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General 3D to 2D motion model

« Given the 3D motion and the 3D to 2D correspondence,
we can derive the 2D motion
— g(), f(): 3D to 2D projection in reference and current frames

MY, = gl 185, Y8, 235 ) — T38:, 18, 235)
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Geometry-based motion prediction

* In the V-PCC, we know the 3D-to-
2D correspondence but do not know
the 3D motion

« We assume the current frame and
the reference frame will not change
dramatically

MVE,. = g(x3:,y3¢, 23:) — f(x3c,y3¢, 23c)

* The problem is that (x3c,y3c,z3c)
may not have a corresponding 2D
point in the reference frame

— We perform motion estimation which
will increase the encoder and decoder
complexity

CityU Talk, 2022
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Auxiliary information based motion prediction

 The previous method has the
following two disadvantages |
— The high encoder and decoder @

complexity El

— It can only apply to the attribute %

0,0,0) /g
MV E3D

« The auxiliary information
based motion prediction
— The auxiliary information

basically provides the coarse
geometry

— We use the 3D offset plus the
2D offset
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Experiments setup

« The proposed algorithm is implemented in the V-PCC
reference software and the corresponding HEVC
reference software

« We test the all the dynamic point clouds defined in the
common test condition including loot, redandblack,
soldier, queen, longdress

* For the geometry, both point-to-point is point-to-plane
are used

« For the attribute, the qualities of the luma, Cb, and Cr
are considered
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Experimental results on the overall scheme

 Qverall scheme results

TABLE III
PERFORMANCE OF THE GEOMETRY-BASED MOTION PREDICTION COMPARED WITH THE V-PCC ANCHOR

Test Geom.BD-GeomRate AttrBD-AurRate Geom.BD-TotalRate Attr.BD-TotalR ate
point cloud D1 D2 Luma Cb CE D1 D2 Luma Cb Cr
Loot 0.0% 0.0% —18.1% 314% -304% | -34% —6.1% —84% -177% -16.9%
RedAndBlack 0.0% 0.0% -16.3% -25.0% -159% | —4.6% —4.6% -8.8% -154% —8.4%
Solider 0.0% 0.0% —33.4% 42.5% -43.2% | -8.2% —8.2% —17.2% -263% -27.0%
Queen 0.0% 0.0% —13.7%  -20.5% -19.2% | -3.5% -3.6% -1.8% -127% -11.6%
LongDress 0.0% 0.0% -9.8% -13.5% -123% | -3.7% -3.7% —6.4% -9.5% —8.4%
Avg. 0.0% 0.0% —18.2% -26.6% -242% | -4.7% —4.7% 97% -163% -14.5%
Enc. time self 975
Dec. time self 98%
Enc. time child 486%
Dec. time child 337%
TABLE IV
PERFORMANCE OF THE AUXILIARY-INFORMATION-BASED MOTION PREDICTION COMPARED WITH THE V-PCC ANCHOR UNDER THE NORMATIVE
SOLUTION
Test Geom.BD-GeomRate Attr BD-AttrRate Geom.BD-TotalRate Attr. BD-TotalRate
point cloud D1 D2 Luma Cb Cr D1 D2 Luma Cb Cr
Loot —4.0% —3.9% -16.3% -264% -28.5% —6.3% —6.2% -9.6% -167% -17.9%
RedAndBlack -1.0% -1.1% -12.2% -189% -10.9% —4.0% —4.1% -1.2% -12.1% —6.2%
Solider —8.0% -1.9% -31.3% 41.4% -404% | -13.6% —13.4% -19.8% -28.7% -28.1%
Queen -5.9% -5.9% -11.8% -17.0% -157% -1.3% -1.3% -9.1% -129% -11.8%
LongDress -1.1% -1.1% -8.3% -11.2% -10.2% -3.8% -3.6% -5.7% -8.2% -1.3%
Avg. —4.0% —4.0% -16.0% -23.0% -21.1% ~1.0% -6.9% -10.3% -157% -14.3%
Enc. time self 100%
Dec. time self 100%
Enc. time child 98%
Dec. time child 994
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Performance Analysis

 Intra blocks reduce significantly, resulting in taking adv
of inter coding efficiency

(a) Soldier Geometry Anchor (b) Soldier Geometry Normative (c) Soldier Geometry Non-normative

(d) Soldier Geometry Anchor (e) Soldier Geometry Normative (f) Soldier Geometry Non-normative

CityU Talk, 2022
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Subjective quality

Anchor Proposed
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Adv 3D Motion for VPCC Summary

« Pain point: motion coherence is destroyed in the VPCC
projection process, leads to poor motion compensation
performance

« Key contribution: recover motion coherence in 3D
domain, and generate a predictor for 2D motion
estimation and compensation in HEVC codec.

« Significance: adopted in the VPCC test model.
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Outline

— Depth Field Denoising (IJCV)

CityU Talk, 2022 59.59



VPCC Depth Denoise Work

@ Springer Link

Published: 16 August 2021

Deep Learning Geometry Compression Artifacts
Removal for Video-Based Point Cloud Compression

Wei Jia, Li Li, Zhu Li &1 & Shan Liu

International Journal of Computer Vision 129, 2947-2964 (2021) | Cite this article E] :&
450 Accesses | 1 Altmetric | Metrics PRy
| | 1518

@article{Jia211JCV

author = {Wei Jia and
Li Li and
Zhu Li and
Shan Liu},

title = {Deep Learning Geometry Compression Artifacts Removal for Video-Based
Point Cloud Compression},

journal = {Int. J. Comput. Vis.},

volume = {129},

number = {11},

pages = {2947--2964},

year = {2021},

doi = {10.1007/s11263-021-01503-6},
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The Geometry in VPCC

« Geometry is projected to 2 layers of depth in VPCC
— mainly used to handle occulation
— coding wise is treated as interleaved sequences

2D Far Layer ’ ’ ﬂ 4
Geometry
video o Layer (a) Near layer (b) Far layer

3-D Point clouds
Sequence 0 1 - N-1 N

Picture Oder Count (POC)

(c) The difference of near and far layer

Near (a) and far (b) layer frames in 2-D geometry video
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Geometry Recovery from Depth

« VPCC use occupancy map to signal patches, error
comes from:

— quantization loss in depth (near and far field)

— as well as the occupancy resolution loss in [Jia21TMM]" (4x4 by
default)

(a) 2-D Geometry b } (b) 2-D Texture (c) 3-D Point Cloud
Ground Truth Ground Truth Ground Truth

(&) 2-D Geometry (f) 2-D Texture {g) 3-D Point Cloud
Anchor Anchor Anchor

(d) 2-D Geometry
Difference

[Jia21TMM] W. Jia, L. Li, A. Akhtar, Z. Li and S. Liu, "Convolutional Neural Network-based Occupancy
Map Accuracy Improvement for Video-based Point Cloud Compression,” in IEEE Transactions on
Multimedia, doi: 10.1109/TMM.2021.3079698.
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Joint Near and Far Depth Field Denoising

* A dual path network taking in near and far depth field

* Training strategy:
— near field denoising network is trained first
— far field benefit from denoised near field input in a pseudo-
motion compensation scheme
— some regularization in loss of near and far depth field
interaction

Prodict Geometry near "
E: + !a}'gr Stfp 1: ‘ . ;
Point cloud input Geometry | ppooeo | reconstruction, Geometry Augmented near layer reconstruction ¥, - i
Pi) gy T Yo H:JI.:;}'H rﬁl Pseudo-Motion :
s QHﬂﬂ!IZE L | Compensation Augmented far|  Step 2:
X 9 XinteractMNet

r —l
B ‘ g, 3 I Prodict ) s : layer

Geame!:ry .—R_Lﬂ.d.de‘ld geometry near layer frame g . tep 1:  |reconstruction | :

() Geometry | 1 Geometry = e
‘ Patch addin Padded geometry far Trensiorm. [ far layer .i" 8| = -
at generanan g PAOAINE ) B Ty g | + Geometry far s, 1 I b A
information 2 " layer frame P Quantize layer CNN g =&
_"' reconstruction - B R
g g
F.._-_u--. - GEDmEtT}' '~ -B g
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&
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Results

« BD rate for all intra case:
— significant coding gains :)
— while very limited decoding complexity cost

Table 3 Proposed two-step method and geometry padding method [18] against the geometry smoothing method [32] respectively

on BD-rate and time complexity within the first 32 frames of sequences under all intra

om mm mm mm =y

V-PCC with geometry padding method (SOTA) [15]

T

Pmposeci‘ two-step method

I Geom.BD-Totalrate

Attr.BD-Totalrate

Class | Sequence Geom.BD-Totalrate Attr.BD-Totalrate
D1} D2 | Lumal Cbl Crl 1 D1} D2 | Luma | Ch | Cr|
Loot —4.4% -9.9% 44%  4.8% 5.4% |-20.8%  -18.2% -1.2% -14% -0.5%
A Redandblack | —0.8% —7.5% 4.4% 5.9% 5.0% -10.1%  -11.3% -1.1% -09% —24%
Soldier —1.5% —7.8% 4.4% 7.3% 6.4% -13.8%  -12.8% -1.9%  01% -0.8%
B Longdress —1.3% —8.2% 2.3% 3.5% 3.2% I-.12.8% -13.7% -29% -14% -2.3%
Class a -2.2% —8.4% 44%  6.0% 5.6% 1-14.9% -14.1% -14% —07% -1.2%
class b —1.3% —B8.2% 2.3%  3.5% 3.2% 1-12.8%  -13.7% ~29% —14% —2.3%
Avg. | All —2.0%  —8.3% 3.9% 54% 50%  |\-14.4% -14.0% j -18% -09% -15%
Enc.Self 102% - _—— = = = (3%
Enc.Child 101% 101%
Dec.Self 102% 121%
Dec.Child 101% 212%
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Subjective Results

Redandblack

f!

(a) Ground truth (b) Geometry smoothing (c) Geometry padding (d) Proposed two-step
method method method

Longdress
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VPCC Depth Denoising Summary

 VPCC has a lot of room for improvement

— joint near+far depth field denoising give significant BD rate
reduction

— this shall be combined with the Occupancy map SR work
[Jia21TMM]

— Attributes denoising still has many open opportunities

CityU Talk, 2022
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