Deep Learning in Compression

Zhu Li Director, UMKC NSF Center for Big Learning Dept of Computer Science & Electrical Engineering University of Missouri, Kansas City Email: <u>zhu.li@ieee.org</u>, <u>lizhu@umkc.edu</u> Web: <u>http://l.web.umkc.edu/lizhu</u>

Outline

- □ A Short Intro do MCC Lab at UMKC
- □ A Crash Course on Image Coding
- Deep Learning as a compression tool in standard based codec
- □ End to End Learning based compression
- □ Summary & Discussions

University of Missouri, Kansas City

Short Bio:

Research Interests:

- Immersive visual communication: light field, point cloud and 360 video coding and low latency streaming
- Low Light, Res and Quality Image Understanding
- What DL can do for compression (intra, ibc, sr, inter end2end, c4m)
- What compression can do for DL (model compression, acceleration, feature map compression, distributed training)

NSF I/UCRC Center for Big Learning Creating Intelligence

Multimedia Computing & Communication Lab Univ of Missouri, Kansas City

signal processing and learning

image understanding

visual communication

mobile edge computing & communication

MCC Lab@UMKC

□ The City

- Sister city of Xian, Edgar Snow's home town
- □ The MCC Lab
 - People:
 - 2 post-doc, 8 PhDs, 2 visiting PhD on CSC from SJTU and XJTU
 - Teaching:
 - Digital Image Processing, Computer Vision, and Video Coding.
 - Research focus:
 - Use cases: imaging, compression, and vision
 - Tools: filtering, sparse representation, subspace methods, deep learning, optimization

MCC Lab http://l.web.umkc.edu/lizhu

- **G** Faculty & Post-Docs:
 - Zhu Li, Northwestern, Lab Director (Fall, 2015~)
 - Li Li, Univ of Science & Tech of China, Visiting Assistant Professor/Asst. Director of MCC Lab (Fall, 2016~)
 - Renlong Hang, Nanjing Univ of Info Science & Tech (NUISCT), Post-Doc Researcher (Fall, 2018~)
- PhD Students
 - Dewan F. Noor, Bangeladesh Univ of Engineering & Tech, PhD Student (Spring, 2016~)
 - Zhaobin Zhang, Huazhong Univ of Science & Tech, PhD Student (Fall, 2016~)
 - Yangfan Sun, MS UMKC, PhD Student (Spring 2017~)
 - Raghunath Puttagunta, MS UMKC, PhD Student (Fall 2017~)
 - Birendra Kathariya, MS UMKC, PhD Student (Fall, 2017~)
 - Anique Akhatar, PhD Student (Spring, 2018~)
 - Wei Jia, B.S and M.S, (Beijing Univ of Post & Telecomm)BUPT, PhD Student (Fall, 2018~)
 - Paras Maharjan, MS/PhD student, Deep learning image enhancement/post processing. 2018~
 - Matthew Kayrish, PhD Student (Spring, 2019~).
 - Han Zhang, visiting PhD student, Shanghai Jiaotong Univ (SJTU), 2018~
 - Wenjie Zhu, visiting PhD Student, SJTU, 2017-18.

Entropy, Conditional Entropy, Mutual Info

Essential of Arithmetic Coding

FIGURE 4.1 Restricting the interval containing the tag for the input sequence $\{a_1, a_2, a_3, \ldots\}$.

YUV/YCbCr/YIQ Model

Rec. 601 for TV: specifies a range of [16, 235] for Y' and [16, 240] for C_B and C_R . To obtain Y'C_BC_R from 8-bit R'G'B' values (i.e., in the range [0, 255]), use the transformation:

RGB 24-bit color cube

Conversion between RGB and YIQ

ſ	Y		0.299	0.587	0.114	$\lceil R \rceil$	$\lceil R \rceil$	[1.0	0.956	0.621	$\lceil Y \rceil$
	Ι	=	0.596	-0.274	-0.322	<i>G</i> ,	G =	1.0	-0.272	-0.649	Ι
	Q		0.211	-0.523	0.311	B	B	1.0	-1.106	1.703	Q

Color Space Re-Sampling

- RGB components of an image have strong correlation.
 - Can be converted to YUV space for better compression.
- HVS is more sensitive to the details of brightness than color.
- Can down-sample color components to improve compression.

 \mathbf{X} Luma sample

Chroma sample

MPEG-1

YUV 4:4:4 No downsampling Of Chroma YUV 4:2:2

- 2:1 horizontal downsampling of chroma components
- 2 chroma samples for every 4 luma samples

YUV 4:2:0

- •2:1 horizontal downsampling of chroma components
- •1 chroma sample for every 4 luma samples

The Basics of Image Coding

- □ Block (8x8 pel) based coding
- DCT transform to find sparse representation
- Quantization reflects human visual system
- Zig-Zag scan to convert 2D to 1D string
- Run-Level pairs to have even more compact representation
- □ Hoffman Coding on Level Category
- Fixed on the Level with in the category

Quant Table:

16 11 10 16 24 40	51	61
12 12 14 19 26 58	60	55
14 13 16 24 40 57	69	56
14 17 22 29 51 87	80	62
18 22 37 56 68 109	103	77
24 35 55 64 81 104	113	92
49 64 78 87 103 121	120	101
72 92 95 98 112 100	103	99

Coding of AC Coefficients

8	24	-2	0	0	0	0	0
-31	-4	6	-1	0	0	0	0
0	-12	-1	2	0	0	0	0
0	0	-2	-1	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

- Example: zigzag scanning result 24 - 31 0 - 4 - 2 0 6 - 12 0 0 0 - 1 - 1 0 0 0 2 - 2 0 0 0 0 0 - 1 EOB (Run, level) representation:
- (0, 24), (0, -31), (1, -4), (0, -2), (1, 6), (0, -12), (3, -1), (0, -1), (3, 2), (0, -2), (5, -1), EOB

Better Intra Prediction

☐ Much more modes

Like a sparse transform basis!

- DC mode: copy DC values from neighbor
- Planar mode: top row or left col average
- Angular: pixels on certain line
- Ref: Jani Lainema, Frank Bossen, Woojin Han, Junghye Min, Kemal Ugur, Intra Coding of the HEVC Standard. *IEEE Trans. Circuits Syst. Video Tech.* 22(12): 1792-1801 (2012)

Video Signal Processing

Renxiang Li, Bing Zeng, Ming L. Liou:

A new three-step search algorithm for block motion estimation. IEEE Trans. Circuits Syst. Video Techn. 4(4): 438-442 (1994)

Inter-Prediction

- The purpose: reduce the pixel entropy / variance
- The differential entropy of a pixel is bounded by its
 Gaussian entropy of the same variance

HEVC Coding Structure Slide Credit: Vivienne Sze & Madhukar Budagavi, ISCAS 2014 Tutorial

Ref:

G. Schuster, PhD Thesis, 1996: Optimal Allocation of Bits Among Motion, Segmentation and Residual

Z. Li, 2019

HEVC Coding Tools

□ HEVC (H.265) vs AVC (H.264)

Deblocking Filter

- Reduce blocking artifact in the reconstructed frames
- Can improve both subjective and objective quality
- Filter in H.261:
 - [1/4, 1/2, 1/4]: Applied to non-block-boundary pixels in each block.
 - A low-pass smoothing filter.
- In H.264 (and H.263v2), this is used in the prediction loop to improve motion estimation accuracy. Decoder needs to do the same. Also called loop filter.

After

H.265: 8x4 block level

Outline

Current SOTA Compression Framework Intro

- Deep Learning (DL) as a compression tool in standard based codec
 - DL Super Resolution in intra coding
 - Residual + Reconstruction Deep Learning for deblocking
 - Deep Learning Interpolation in Motion Compensation
 - Deep Learning Chroma Prediction
- □ End to End Learning based compression
- **D** Summary & Discussions

The DLSR encoding framework

$\hfill\square$ The framework of the proposed scheme

 The CNN based Up-Sampling can provide a more accurate pixel or block prediction for pixels

The DCITF Residual Learning SR network

□ We designed a five-layer CNN for the up-sampling of luma and chroma

Experiments

□ Performance of the proposed algorithm

• For UHD test images, we can save up to 9.0% bitrates in average under the same PSNR

Cleas	Saguanaa	BD-	Rate (Anch	nored on H	EVC)	BD-Rate (Anchored on HEVC+DCTIF)			
Class	Sequence	Y	U	V	Y SSIM	Y	U	V	Y SSIM
	Traffic	-10.1%	-3.5%	6.0%	-12.9%	-8.0%	-13.2%	-2.6%	-7.9%
Class A	PeopleOnStreet	-9.7%	-14.8%	-14.5%	-12.9%	-8.5%	-20.4%	-18.5%	-9.7%
Class A	Nebuta	-2.0%	-22.0%	3.1%	-4.4%	-1.7%	-22.5%	1.6%	-3.6%
	SteamLocomotive	-1.7%	-27.7%	-25.4%	-6.1%	-1.2%	-34.2%	-25.6%	-2.8%
-	Kimono	-7.7%	-5.5%	18.8%	-9.6%	-3.4%	-25.9%	-4.3%	-3.4%
	ParkScene	-7.1%	-14.4%	-2.3%	-11.3%	-5.0%	-25.2%	-14.6%	-6.6%
Class B	Cactus	-6.6%	-2.5%	8.3%	-10.0%	-5.0%	-6.5%	0.9%	-6.7%
	BQTerrace	-3.7%	-7.6%	-9.1%	-9.6%	-3.1%	-8.2%	-7.1%	-6.5%
	BasketballDrive	-6.1%	-1.2%	3.2%	-10.8%	-3.4%	-5.8%	-2.5%	-3.8%
	BasketballDrill	-4.9%	4.5%	8.1%	-7.9%	-4.0%	4.9%	2.1%	-6.6%
Class C	BQMall	-2.9%	-7.2%	-7.2%	-6.2%	-2.3%	-10.6%	-9.1%	-5.3%
Class C	PartyScene	-1.0%	-5.1%	-1.6%	-4.0%	-1.0%	-5.5%	-3.2%	-3.6%
	RaceHorsesC	-6.7%	4.6%	7.5%	-10.7%	-6.0%	1.9%	3.9%	-8.6%
	BasketballPass	-2.0%	-3.7%	9.2%	-4.3%	-2.3%	-7.5%	12.3%	-4.4%
Class D	BQSquare	-0.9%	-0.6%	-21.1%	-1.4%	-0.5%	1.7%	-16.7%	-1.2%
Class D	BlowingBubbles	-3.2%	3.1%	-8.0%	-5.3%	-1.7%	0.5%	-9.6%	-3.8%
	RaceHorses	-9.9%	7.5%	6.4%	-12.6%	-9.6%	5.0%	6.6%	-11.1%
	FourPeople	-7.2%	-10.5%	-11.0%	-11.0%	-7.2%	-14.7%	-14.5%	-9.5%
Class E	Johnny	-9.0%	-3.2%	-3.2%	-11.1%	-7.1%	-6.0%	-8.3%	-5.6%
	KristenAndSara	-6.8%	-11.2%	-11.1%	-13.0%	-5.3%	-8.4%	-10.6%	-8.2%
	Fountains	-4.0%	-12.9%	-11.2%	-7.4%	-2.0%	-16.1%	-9.2%	-2.0%
	Runners	-11.2%	22.8%	-0.1%	-12.4%	-7.0%	0.9%	-13.7%	-6.0%
Class UHD	Rushhour	-8.5%	4.4%	1.8%	-10.3%	-3.2%	-9.2%	-9.5%	-3.0%
	TrafficFlow	-12.7%	-11.7%	-5.8%	-12.7%	-6.9%	-17.3%	-11.9%	-5.6%
	CampfireParty	-8.4%	-10.8%	-0.8%	-9.5%	-6.5%	-10.8%	-5.0%	-6.4%
Average of Classes A-E		-5.5%	-6.0%	-2.2%	-8.8%	-4.3%	-10.0%	-6.0%	-5.9%
Average of Class UHD		-9.0%	-1.6%	-3.2%	-10.5%	-5.1%	-10.5%	-9.9%	-4.6%

Experiments

□ Ratio of the DL methods activated in the operation

- *P_{hitting}*: Ratio of DLSR in RDO modes
- P_{luma} , P_{Cb} , P_{Cr} : Ratio of CNN

Class	P _{Hitting}	P _{Luma}	P_{Cb}	P_{Cr}
Class A	72.2%	70.3%	71.2%	55.0%
Class B	68.4%	75.0%	65.1%	49.4%
Class C	48.1%	92.0%	68.5%	73.5%
Class D	42.4%	81.9%	51.6%	70.7%
Class E	68.7%	72.8%	54.4%	58.5%
Class UHD	85.2%	68.4%	54.2%	64.1%

HEVC in-loop filter

□ The loop filters in HEVC De-blocking filter

Sample adaptive offset

- □ Advantages: low complexity
- Disadvantages: fixed, limited performance improvement

Motivation - Guided Filtering

- □ The residual frame can be used as the guidance for the in-loop filter of the reconstructed frame
 - Larger residuals indicate larger reconstruction errors

(a) Origin

(b) Reconstruction

(c) Prediction

Coding-prior-based in-loop filter

The residual frame is used as the additional input
 Specific networks for reconstruction and residual

- Residual Network: residual blocks
- Reconstruction Network: down-sampling and up-sampling

Experimental results

Comparison with VRCNN

Intra: 2.1% improvement

Inter: 0.7% improvement

Class	Sequence	VRCNN vs. HEVC	RRCNN vs. HEVC	Class	Sequence	VRCNN vs. HEVC	RRCNN vs. HEVC
A	Traffic	-8.1%	-10.2%	Α	Traffic	-5.0%	-6.0%
	PeopleOnStreet	-7.7%	-9.4%		PeopleOnStreet	-1.4%	-1.6%
В	Kimono	-5.9%	-8.6%	В	Kimono	-1.9%	-2.6%
	ParkScene	-6.2%	-8.1%		ParkScene	-2.7%	-3.4%
	Cactus	-2.7%	-5.8%		Cactus	-3.2%	-3.9%
	BasketballDrive	-5.2%	-7.7%		BasketballDrive	-1.4%	-1.9%
	BQTerrace	-2.9%	-4.2%		BQTerrace	-5.2%	-5.8%
С	BasketballDrill	-10.6%	-13.8%	С	BasketballDrill	-3.1%	-4.3%
	BQMall	-7.3%	-9.3%		BQMall	-2.0%	-2.5%
	PartyScene	-4.6%	-5.6%		PartyScene	-0.5%	-1.0%
	RaceHorses	-5.8%	-7.1%		RaceHorses	-1.3%	-1.4%
D	BasketballPass	-7.6%	-9.5%	D	BasketballPass	-0.7%	-0.9%
	BQSquare	-5.3%	-6.3%		BQSquare	-1.4%	-2.1%
	BlowingBubbles	-5.5%	-6.7%		BlowingBubbles	-1.8%	-2.4%
	RaceHorses	-8.9%	-10.2%		RaceHorses	-1.5%	-1.6%
Е	FourPeople	-10.0%	-12.8%	E	FourPeople	-8.2%	-9.5%
	Johnny	-9.1%	-12.5%		Johnny	-7.6%	-10.2%
	KristenAndSara	-9.4%	-11.8%		KristenAndSara	-6.9%	-7.6%
	Class A	-7.9%	-9.8%		Class A	-3.2%	-3.8%
	Class B	-4.6%	-6.9%		Class B	-2.9%	-3.5%
	Class C	-7.1%	-8.9%		Class C	-1.7%	-2.3%
	Class D	-6.8%	-8.2%		Class D	-1.4%	-1.7%
	Class E	-9.5%	-12.4%		Class E	-7.6%	-9.1%
Avg.	All	-6.8%	-8.9%	Avg.	All	-3.1%	-3.8%

HEVC interpolation filter

DCTIF: fixed and simple interpolation filter

- Luma: 8/7 taps interpolation filter
- Chroma: 4 taps interpolation filter

Deep-learning-based interpolation filter

CNN-based fractional pixel motion compensation

- Input: reconstructed block
- Label: original block
- No coding-prior information during compression is used

Rich Coding Prior Deep Learning Interpolation

- □ The residual block and the co-located high quality blocks are used as the additional inputs of the CNN
- □ We design specific network structures for the residual, reconstruction and collocated blocks

Experimental results

□ The coding prior can bring 5.3% improvement over HEVC

Class	Sequence	BD-rate of LDP(%)					
Class	Sequence	FRCNN[1]	GVCNN[2]	Proposed			
	Kimono	-4.3	-4.1	-6.7			
	ParkScene	-1.9	-5.2	-3.2			
Class B	Cactus	-3.8	-3.3	-5.9			
	BasketballDrive	-5.0	-1.3	-6.2			
	BQTerrace	-6.5	-2.5	-11.4			
l l	BasketballDrill	-4.0	-2.2	-5.1			
Class C	BQMall	-4.8	-2.9	-5.5			
Class C	PartyScene	-3.2	-1.6	-3.6			
	RaceHorses	-3.0	-2.0	-4.0			
ĺ l	BasketballPass	-3.3	-3.3	-4.8			
Class D	BQSquare	-4.2	-2.1	-5.6			
Class D	BlowingBubbles	-4.7	-0.6	-4.4			
	RaceHorses	-1.9	-2.7	-3.8			
	FourPeople	-5.7	-1.6	-8.3			
ClassE	Johnny	-6.2	-2.9	-9.0			
	KristenAndSara	-6.3	-2.2	-8.4			
	BasketballDrillText	-4.1	-1.8	-4.8			
ClassE	ChinaSpeed	-2.0	-1.4	-1.7			
Classi	SlideEditing	-0.7	0.0	-0.3			
	SlideShow	-2.3	-0.5	-2.3			
	ClassB	-4.3	-3.3	-6.7			
	ClassC	-3.8	-2.2	-4.5			
Average	ClassD	-3.5	-2.2	-4.6			
	ClassE	-6.1	-2.2	-8.5			
	ClassF	-2.3	-0.9	-2.3			
Overall	All Sequences	-3.9	-2.2	-5.3			

Linear prediction from Luma to Chroma

- Linear relationship between Y, Cb, and Cr
 - Luma down-sampling $y'_{R}(i,j) = [y_{R}(2i,2j) + y_{R}(2i,2j+1)]/2$
 - Linear relationship

Chroma Prediction in Coding

□ The coding priors neighboring luma and chroma pixels are used as the additional input

- Neighboring pixels: full connected layers
- Current luma block: convolutional layers

Experimental results

0.2%, 3.1%, and 2.0% performance improvements on Y, U, and V components

Class	Sequence	Y	U	V
1 ₀₀	Traffic	-0.0%	-2.1%	-0.7%
Class A	PeopleOnStreet	-0.2%	-2.4%	-2.5%
Class A	Nebuta	-0.6%	-9.2%	-0.8%
	SteamLocomotive	-0.0%	-9.1%	1.5%
	Kimono	-1.2%	-5.4%	0.1%
	ParkScene	-0.7%	-8.9%	-0.7%
Class B	Cactus	-0.0%	-4.0%	-3.8%
	BQTerrace	-0.2%	0.4%	-1.9%
	BasketballDrive	-0.2%	-3.6%	-4.2%
5	BasketballDrill	-0.3%	-1.6%	0.7%
Class C	BQMall	-0.1%	-5.7%	-3.4%
Class C	PartyScene	-0.2%	-4.6%	-0.9%
	RaceHorsesC	-0.1%	0.6%	-0.3%
2	BasketballPass	-0.9%	-1.3%	-4.2%
Class D	BQSquare	0.4%	0.6%	-0.3%
Class D	BlowingBubbles	0.4%	-3.2%	-7.8%
	RaceHorses	0.4%	-2.0%	-1.8%
8 2	FourPeople	-0.1%	-1.8%	-0.2%
Class E	Johnny	0.6%	0.4%	-3.8%
	KristenAndSara	-0.4%	1.2%	-5.2%
	Average	-0.2%	-3.1%	-2.0%

References

□ Some of the recent and on-going work

- Y. Li, L. Li, D. Li, H. Li, Z. Li, and F. Wu, "Learning a Convolutional Neural Network for Image Compact Resolution", accepted, IEEE Trans on Image Processing, 2018.
- Y. Li, L. Li, Z. Li, J. Yang, N. Xu, D. Liu, H. Li, "A Hybrid Neural Network for Chroma Intra Prediction" IEEE Int'l Conf on Image Processing (ICIP), Athens, Greece, 2018.
- H. Zhang, L. Li, L. Song, X.-K. Yang, Z. Li "Advanced CNN Based Motion Compensation Fractional Interpolation", IEEE Int'l Conf on Image Processing (ICIP), 2019.
- Z. Zhang, L. Li, Z. Li, and H. Li, "Mobile Visual Search Compression with Grassmann Manifold Embedding", IEEE Trans on Circuits & Sys for Video Tech, accepted.

Outline

- **Current SOTA Compression Framework Intro**
- Deep Learning as a compression tool in standard based codec
- □ End to End Learning based compression
- □ Summary & Discussions

End-End Deep Learning Based

Motivation

- Deep learning for compression has achieved remarkable progress and attracted quite some attention.
- Google's Variational Autoencoder:
 - differentiable quantization loss via AWGN type noise
 - context model for the Arithmetic Coding

Current SOTA Models

Learning-based Methods

- G. Toderici et al., 2017
- J. Balle, 2018
- J. Balle, et al., 2018
- D. Minnen et al., 2018
- F. Mentzer *et al.*, 2018
- J. Lee et al., 2019

Method	Implementations				
G. Toderici et al., 2017 [10]	rnn-compression [18]				
J. Ballé, 2018 [4]					
J. Ballé et al., 2018 [6]	Tensorflow Data Compression [19]				
D. Minnen et al., 2018 [7]					
F. Mentzer et al., 2018 [9]	imgcomp-cvpr [20]				
J. Lee et al., 2019 [8]	CA_Entropy_Model [8]				

□ Standards based Codecs

- HEVC
- VVC

Datasets & Common Test Condition (CTC)

- \Box Kodak^[1]
- □ VVC CTC sequences
- □ For fair comparison, evaluate in the same color space

Model Configurations

□ Learning-based methods

- Using Tensorflow repository from their papers

□ HEVC and VVC

- HM 16.0
- VTM 5.0
- QP = [17, 42, 22, 27, 32, 37, 42]
- Bit depth = 8

Accessible at: http://www.cipr.rpi.edu/resource/stills/kodak.html

PSNR Results

- □ On Kodak dataset, VTM performs best in <0.75 bpp area, while is surpassed by learning-based method when bpp is larger than 0.75.
- □ On CTC sequences, HM/VTM are significantly better.

Fig. 2: PSNR results using HM/VTM comparing with LBC methods on Kodak and CTC test sequences.

MS-SSIM Results

On Kodak dataset, VTM and LBC are comparable.
On CTC sequences, HM/VTM are significantly better.

Fig. 3: MS-SSIM results using HM/VTM comparing with LBC methods on Kodak and CTC test sequences.

Time Complexity

Table 2: Decoding time in seconds on VVC	CTC test sequences.
--	---------------------

Close	Saguanga Nama	J. Bal	lé [4]	J. Ba	llé [6]	D Minnen [7]	L L eo [8]	E Mantzar [0]	G. Todariai [10]	VTM 5.0	HM 16.0
Class	Sequence Mame	LReLU	GDN	factorized	hyperprior	D. Winnen [7]	J. Lee [0]	r. Mentzer [9]	O. Todener [10]	v 11v1-5.0	1101-10.0
	Tango2	6.655	6.346	9.596	9.368	14.289	873.163	36.908	14.493	0.645	0.827
A1	FoodMarket4	6.127	5.706	8.847	8.764	13.273	786.189	27.384	9.436	0.554	0.697
	Campfire	5.245	5.462	8.341	8.377	13.509	772.247	33.829	5.292	1.085	0.971
3	CatRobot	6.106	5.914	<mark>9.695</mark>	9.032	13.828	790.025	27.630	10.443	0.792	0.894
A2	DaylightRoad2	6.031	5.719	8.690	8.755	13.378	809.819	27.615	16.271	0.828	0.884
	ParkRunning3	6.063	6.125	9.025	9.034	13.967	830.452	27.319	6.396	1.022	1.152
	MarketPlace	2.132	2.131	2.919	2.976	4.365	216.086	6.168	1.560	0.227	0.325
	RitualDance	1.992	1.888	2.709	2.748	4.125	206.234	6.190	1.494	0.175	0.232
В	Cactus	2.041	2.050	2.771	2.877	4.287	197.209	6.123	4.885	0.353	0.280
	BasketballDrive	2.113	2.012	2.819	2.868	4.269	199.110	6.198	1.726	0.246	0.133
	BQTerrace	1.980	2.008	2.777	3.041	4.260	194.927	6.246	1.481	0.446	0.213
	RaceHorses	0.914	0.926	1.091	1.144	1.672	46.312	0.803	0.423	0.090	0.062
C	BQMall	0.957	0.960	1.129	1.207	1.687	43.170	1.152	0.447	0.090	0.126
C	PartyScene	0.912	0.931	1.098	1.161	1.689	41.690	0.806	0.376	0.110	0.198
	BasketballDrill	0.933	0.940	1.099	1.190	1.686	40.976	0.850	0.444	0.100	0.117
	RaceHorses	0.729	0.755	0.802	0.912	1.196	13.251	0.173	0.249	0.028	0.037
D	BQSquare	0.729	0.762	0.805	1.107	1.211	13.268	0.294	0.248	0.036	0.072
D	BlowingBubbles	0.731	0.735	0.773	0.841	1.200	12.582	0.167	0.249	0.035	0.042
	BasketballPass	0.751	0.767	0.793	0.874	1.228	12.643	0.185	0.260	0.029	0.048
	FourPeople	1.316	1.284	1.639	1.769	2.499	102.818	2.796	0.833	0.119	0.141
E	Johnny	1.300	1.274	1.627	1.742	2.424	98.666	2.034	0.878	0.090	0.110
	KristenAndSara	1.312	1.309	1.637	1.676	2.446	97.198	2.103	0.852	0.099	0.110
	ArenaOfValor	2.101	20.534	21.608	26.660	39.328	214.568	8.632	4.544	0.412	0.585
F	BasketballDrillText	0.948	1.060	1.116	1.222	1.689	41.446	0.829	0.446	0.081	0.100
1	SlideEditing	1.229	1.279	1.606	1.685	2.541	93.765	2.042	0.720	0.126	0.160
	SlideShow	1.230	1.237	1.590	1.616	2.461	94.557	2.046	0.738	0.098	0.219
	Total Time	62.577	80.204	106.602	112.646	168.507	6842.371	236.519	85.184	7.956	8.735
Ti	me Complexity*	7.16×	9.18×	12.20×	12.90×	19.29×	783.33×	27.08×	9.75×	0.91׆	1.00 ×
*0	1 HEVO	G	LINE 1	(0)				-		temp	

*Compared with HEVC reference software HM-16.0.

[†]SIMD is enabled.

Observations & Discussions

- Learning Based Compression efficiency is still far lagging behind the standard based SOTA codec in image compression, 2-3dB is like 10 years' technology gap
- Complexity of the CNN is prohibitive for current hardware technology for meaningful deployment
- Learning based solution is a good framework for reducing signal differential entropy, indeed standards based solution now involves many modes of opeartions that is equivalent to the many signal paths in the CNN
- □ Should have a more rigorous grand challenge CTC scheme for learning based compression research.