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Outline

« Short Self Intro & Research Highlights
« Point Cloud Capture and Applications
« Geometry Compression

« Graph Signal Processing and Attributes Compression
« UMKC PCC work

— Static Geometry Compression: Plane Projection Approximation

— Dynamic Geometry Compression: Kd-tree decomposition and
residual coding

 Summary
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Dark Image Enhancement

* To design network to denoise the low-light image in Bayer
domain

 To use wavelet decomposition to divide and conquer the
problem by learning sensor field sub images using separate
netowks

[d] SID [e] ResLearning [f] Ours
PSNR=27.64 dB PSNR= 28.60 dB PSNR=33.29 dB

Figure 4: [a] Extreme low-light image from Sony a7S |l exposed for 1/25 second . [b] 250x intensity scaling of image in [a]. [c] Ground truth image captured with 10 second exposure
time. [d] Output from SID[]. SID introduced some artifacts around the edge of the chair as shown by green arrow. [e] Output from ResLearning[]. The white region as indicated by
arrow in image is not properly reconstructed as white compared to that in ground truth image. [f] Our result.
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Decomposition based residual learning from sensor
field

Decomposition of the target image via Wavelet

Adaptive loss functions for different subbands to exploit strong texture
prior

ﬁsturctural =1 SSIM(C%a 33) (2)

EHF = ﬁl + a * ‘Csturctura,l (3)

Second Stage

First Stage

Amplification Ratio
Haw HY s ] Network LH
® Wavelet Inverse Off-the-shelf
Decomposition N L Wavelet ISP
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Figure 12: Overview of our wavelet decomposition based network. The first stage learns the decomposed image and used the inverse wavelet to reconstruct the denoised 4 channel image.
The second stage uses the off-the-shelf ISP to enhances the image and converts into 3 channel sRGB image.
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Experimental Results

Table 2. Comparison of our proposed method of denois-
ing before ISP with the existing method of joint denoising
and demosaicing based on three subgroups of the dataset for

100x, 250x and 300x.

Table 1. Comparison of our proposed method of denoising
before ISP with the existing method of joint denoising and
demosaicing.

Experiments PSNR RMSE NIQE

Experiments 100x  250x  300x

SID[A] 28.97  0.03956 5.1904
ResLearning[?1]  29.16 0.03926 5.8507 STDIE] 008 2Ba2 2855
Ours 3002 0.03568 4.6166 ResLearning[?1] 30.53 28.78 28.38
Ours 32.34 2997 2822

28.34 dB
BM3D

Noisy Image 34.20 dB 34.39 dB 35.04 dB
SID ResLearning Ours
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Deep Guided Filtering Deblocking

« The residual frame can be used as the guidance for the
in-loop filter of the reconstructed frame
— Larger residuals indicate larger reconstruction errors

(b) Reconstruction

(c) Prediction (d) Residual
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Coding-prior-based in-loop filter

* The residual frame is used as the additional input

» Specific networks for reconstruction and residual
— Residual Network: residual blocks
— Reconstruction Network: down-sampling and up-sampling

l nhced

E 3
' | Reconstruction
Reconstruction
L The Reconstruction Network: '

’ Convotution ’ PR=LU ’ Pooling + Convolution + PReLU =——p Skip Connection G Concatenate
Convolution-Transposed + Convolution + PReLU ' ! Residual Block =W——{

The Residual Network

F—P

Z. Li, 2019



Experimental results

e Comparison with VRCNN

Intra: 2.1% improvement

Inter: 0.7% improvement

Class | Sequence VRCNN vs. HEVC | RRCNN vs, HEVC Class | Sequence VRCNN vs. HEVC | RRCNN vs. HEVC

A Traflic 8.1% -10.2% A Traffic 5.0% -6.07%
PeopleOnStreet T.7% 9.4% PeopleOnStreet 1.4% -1.6%

B Kimono 5.9% -8.6% B Kimono 1.9% -2.6%
ParkScene 6.2% -8.1% ParkScene 2.7% -3.4%

Cuctus 2.7% -5.8% Cactus 3.2% -3.99%
BasketballDrive 5.2% “1.7% BasketballDrive 1.4% -1.9%
BQTerrace 2.9% -4.2% BQTerrace 5.2% -5.8%

C BasketballDrill 10.6% -13.8% C BasketballDnll 3.1% -4.3%
BOQMall 7.3% -9.3% BQMall 2.0% -2.5%
PartyScene 4.6% -5.6% PartyScene 0.5% -1.0%
RaceHorses 5.8% “7.1% RaceHorses 1.3% -1.4%

D BusketballPass 7.6% -9.5% D BasketballPass 0.7% -0.9%
BQSquare 5.3% -6.3% BQSquare 1.4% -2.1%
Blowing Bubbles 5.5% -6.7% BlowingBubbles 1.8% -2.4%
RaceHorses B.0% -10.2% RaceHorses 1.5% -1.6%

E FourPeople 10.0% 12.8% E FourPeople 5.2% -9.5%
Johnny 9.1% -12.5% Johnny T.6% -10.2%
KristenAndSara 9.4% -11.8% KristenAndSara 6.9% -7.6%

Class A - 7.9% 9.8% Class A 3.2% -3.8%

Class B 4.6% -6.9% Class B 2.9% -3.5%

Class C T.1% -8.9% Class C 1.7% -2.3%

Class D 6.8% -8.2% Class D 1.4% -1.7%

Class E 9.5% -12.4% Class E 7.6% -9.1%

Avg. | All 6.8% -8.9% Avg. | All 3.1% -3.87%
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Deep Radar Signal Learning for Privacy Preserving
Fall Detection

« Use case:Seniors assisted living - Fall Detection
« Approach:

— 77Ghz portable radar array sensor set up: horizontal and
vertical scanning, 4x2 Tx/Rx

— Radar Signal Low Dimension Embedding + LSTM action
recognition

Time

GRB Inmages tj
from

Realsense

Figure 1. mmWave Radar based Fall Detector
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Neural network processing

L Human activities are continuous dynamic patterns that can be recognized in

both spatial and temporal dependencies. We use successive radar reflection
heatmaps as the representative of human activities.

= PCA is adopted as RLDE algorithm to project reflection heatmaps {H,, V;} to a low-
dimension subspace P as the elimination of spatial redundancies,

= The proposed RNN with LSTM units utilizes the changes of motion at the temporal
domain. The softmax layer operates as a classifier. The cross-entropy function is
adopted as the objective function.

ht |

N St+1
Ht Vi Ht+i Vi1

Figure 3. Architecture of RNN with LSTM units
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Extensive experiment

« Multiple human activities detections: 7 categories of
human activities are labeled: Boxing, Falling, Jogging,
Jump, Pick up, Stand up & Walking.

falling 1.2%

walking

boxing

Confusion Matrix of Multiple Human Activities

32.1%

falling

2.3%

1.2% 1.2%

jogging jump

0.7%

5.7%

pickup

Predicted Class

3.5%

156.3%

49.1%

standup

8.2%

1.8%

13.2%

walking

Figure 4. Accuracy of Multiple Human Activities Detecting

Average Inference Time Complexity:

RLDE + LSTM: 0.06042 sec
3DCNN: 7.336 sec

Z. Li, 2019
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Outline

Point Cloud Capture and Applications
Geometry Compression
Graph Signal Processing and Attributes Compression

UMKC PCC work
Summary

Z. Li, 2019
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What 1s Point Cloud

* A collection of Un-ordered points with
— Geometry: expressed as [X, Y, Z]
— Color Attributes: [r g b], or [y u V]
— Additional info: normal, timestamp, ...etc.

« Key difference from mesh: no order or local topology
Info

Z. Li, 2019
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Point Cloud Capture

« Passive: Camera array stereo depth senso

freeD

FREE DIMENSIONAL ¥IDEOD

Standard front [
bottom laser




Point Cloud Inter-Operability with Other Formats

* Provide true 6-DoF Content capacity

(Super) Multi View light-field

ray tracing and
plane intersection

1

collect rays
select a
view
compute . .
- - compute point position compute rays from
disparity . ) o
capture from ray/beam intersection lighting model or angle-
more dependent colors

views!

remove depth

planar projection
(projection)

(occlusions are lost)

remove local
topology

compute point position
from depth

add depth
to 2D texture

=

compute local
topology

(point connections)

2D flat 2D + depth point cloud mesh
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PCC in MPEG

« Part of the MPEG-Immersive grand vision

Jan 2018 2019 2020 2021 2022
2017 : : f | |

Genomic
Information
Representatton

H . AudicWave nghtfleld
Internet- Video Field Codmg Codlng
Coding
s g New
AR/VR Audio Vldeo Codec
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Network-
Distributed

3DOF AV
Media :
Orchestratton

* denotes 2" version
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Point Cloud Compression - Geometry

« Can be lossy in both quantization and samples

- N N R
. lossless . | .v
coding S 5 .
isinal point lossless coding lossless coding
\_ originat points J \_ scan 1 N\l scan 2 J
llossy coding
a ® Y4 ® N ® Y4 ® @
lossy coding lossy coding lossy coding lossy coding
\ high quality ~/ \ mid quality / \ low quality / \ very low quality /
Z. Li, 2019 p.19



Octree Based Point Cloud Compression

* OQctree is a space partition solution
— lteratively partition the space into sub-blocks.
— Encoding: 0 if empty, 1 if contains data points
— Level of the tree controls the quantization error

___$ 10010001

10010001 O 3 @ 11001001 O B O ®10010001
0008000 06000000 €008000®

Credit: Phil Chou, PacketVideo 2016
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Lossless Compression of the Octree with Neural

Network driven CABAC

* Tree Structure:

— DFS scanning of the Octree node byte to have a
byte stream

— Compression of the byte stream via Arithmetic
Coding, or shallow neural network PAQ coding

* Residual Coding:

0,5 0,75 0875 1

e
—
o

——
—
-
.
——
e

— Range coding: coding the residual

. . . T weights
against a ref point (eg., centroids of W

octree leaf node centroids)
— Plane/Surface approximation coding:

compute the projection distances to a surface,
surface can be polynomial or planar.

2)uvw residual quantized
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Scalable Point Cloud Geometry Coding

« Binary Tree embedded Quadtree (BTQT) coding:

— Binary tree partition to have lossy geometry approximation

— Refine each leaf node with Quadtree/Octree to offer scalable
details upto near lossless

ot S\\:\\\K\\\“' X
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Scalable Geometry Coding with BTQT

* Construct Binary Tree of Point Cloud

« R, =(2-1)*(2+K) + 6*K, cost of signalling for
resolution K bits and binary tree depth L

« Intra-Coding i.e. either Quadtree (flat surface) or
Octree(not flat)

QT case overhead: R, = 3*p + 3*q bits, for singalling
norma at p bits and point at q bits. q < K proportional
to the leaf node size.

depth:1 . depth:3

, Co > A ) o N IS o o
: : : : ) : ! ]
(=]
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Scalable Coding with Quadtree/Octree

275

L=L2<L1

L=L3<L2

Z. Li, 2019
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Point cloud Visualization

citytunnel dataset (MERL) — 1.5 km long section

of a

Z. Li, 2019

p.26



Result: Category 1 Geometry Coding Efficiency

75

70

65

D1 psnr

1 —+&=— kd:11,theta:0.005
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Reconstructed-Zoomed

» Various reconstruction accuracy:

Z. Li, 2019 p.28



Video-based point cloud compression

« Basic steps
— Normal-based projection, frame packing, and frame padding

* Normal-based projection
— Organize the points with similar normal into a patch

— Project each patch to the 3D point cloud bounding box

Patch 2D
ding b
bounding box Proicction

plaj
(0, 0)
|
|
A |
Patch 3D

|
_}_l/"""y bounding box
| (i, y3

—1 5 Point cloud 3D
~

bounding box
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Video-based point cloud compression

 Frame packing: pack the patches into frames
— Exhaustive search empty space for the current patch
— Patch rotation is supported
— Introduced a lot of sharp edges

Z. Li, 2019

p.30



VPCC - Texture Padding

« Texture padding: a number of methods are proposed to
minimize the bitrate of the unoccupied pixels

« Using push-pull algorithm as an example, like dilation

Z. Li, 2019 p.31



Video-based point cloud compression

« Basic idea: project a point cloud to a 2-D video for an
efficient compression

Geometry

Z. Li, 2019 p.32



VPCC Motion Model

* The corresponding patches may be put in totally
different positions in various frames (Green squares)

— The current video codec may be unable to find a good motion
vector for each block in this case

— The geometry is encoded before the attribute, we can use the
geometry to derive a better motion vector for attribute

Z. Li, 2019
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General 3D to 2D motion model

« Given the 3D motion and the 3D to 2D correspondence,
we can derive the 2D motion
— g(), f(): 3D to 2D projection in reference and current frames

MY, = gl 18, Yp, 235 ) — T(#8s, 18, 23;)

Z. Li, 2019 p.34



Geometry-based motion prediction

* In the V-PCC, we know the 3D-to-
2D correspondence but do not know
the 3D motion

« We assume the current frame and
the reference frame will not change
dramatically

MVE,. = g(x3:,y3¢, 23:) — f(x3c,y3¢, 23.)

* The problem is that (x3c,y3c,z3c)
may not have a corresponding 2D
point in the reference frame

— We perform motion estimation which
will increase the encoder and decoder
complexity

Z. Li, 2019

p.35



Auxiliary information based motion prediction

 The previous method has the
following two disadvantages |
— The high encoder and decoder @

complexity El

— It can only apply to the attribute %

0,0,0) /g
MV E3D

« The auxiliary information
based motion prediction
— The auxiliary information

basically provides the coarse
geometry

— We use the 3D offset plus the
2D offset

Z. Li, 2019 p.36



Experiments setup

« The proposed algorithm is implemented in the V-PCC
reference software and the corresponding HEVC
reference software

« We test the all the dynamic point clouds defined in the
common test condition including loot, redandblack,
soldier, queen, longdress

* For the geometry, both point-to-point is point-to-plane
are used

* For the attribute, the qualities of the luma, Cb, and Cr
are considered

Z. Li, 2019 p.37



Experimental results on the overall scheme

 Qverall scheme results

TABLE III
PERFORMANCE OF THE GEOMETRY-BASED MOTION PREDICTION COMPARED WITH THE V-PCC ANCHOR
Test Geom.BD-GeomRate AttrBD-AurRate Geom.BD-TotalRate Attr.BD-TotalR ate
point cloud D1 D2 Luma Cb s D1 D2 Luma Cb Cr
Loot 0.0% 0.0% —18.1% -314% -304% | -34% —-6.1% —84% -177% -16.9%
RedAndBlack 0.0% 0.0% -16.3% -25.0% -159% | —4.6% —4.6% -8.8% -154% —8.4%
Solider 0.0% 0.0% —33.4% 42.5% -43.2% | -8.2% —8.2% —17.2% -263% -27.0%
Queen 0.0% 0.0% —13.7%  -20.5% -19.2% | -3.5% -3.6% -1.8% -127% -11.6%
LongDress 0.0% 0.0% -9.8% -13.5% -123% | -3.7% -3.7% —6.4% -9.5% —8.4%
Avg. 0.0% 0.0% —18.2%  -26.6% -242% | -4.7% —4.7% 97% -163% -14.5%
Enc. time self 979
Dec. time self 98%
Enc. time child 486%
Dec. time child 337%
TABLE IV
PERFORMANCE OF THE AUXILIARY-INFORMATION-BASED MOTION PREDICTION COMPARED WITH THE V-PCC ANCHOR UNDER THE NORMATIVE
SOLUTION
Test Geom.BD-GeomRate Att BD-AttrRate Geom.BD-TotalRate Attr. BD-TotalRate
point cloud D1 D2 Luma Cb Cr D1 D2 Luma Cb Cr
Loot —4.0% —3.9% -16.3% -264% -28.5% —6.3% —6.2% -9.6% -167% -17.9%
RedAndBlack -1.0% -1.1% -12.2% -189% -10.9% —4.0% —4.1% -1.2% -12.1% —6.2%
Solider —8.0% ~1.9% -31.3% 41.4% -404% | -13.6% —13.4% -19.89% -28.7% -28.1%
Queen -5.9% -5.9% -11.8% -17.0% -157% -1.3% -1.3% -9.1% -129% -11.8%
LongDress -1.1% -1.1% -8.3% -11.2% -10.2% -3.8% -3.6% -5.7% -8.2% -1.3%
Avg. —4.0% —4.0% -16.0% -23.0% -21.1% ~1.0% —6.9% -103% -157% -14.3%
Enc. time self 100%
Dec. time self 100%
Enc. time child 98%
Dec. time child 994

Z. Li, 2019



Performance Analysis

 Intra blocks reduce significantly, resulting in taking adv
of inter coding efficiency

(a) Soldier Geometry Anchor (b) Soldier Geometry Normative (c) Soldier Geometry Non-normative

(d) Soldier Geometry Anchor (e) Soldier Geometry Normative (f) Soldier Geometry Non-normative

Z. Li, 2019
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Subjective quality

Anchor Proposed

Z. Li, 2019
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Occupancy Map Driven Rate-Distortion Optimization

* The current rate distortion optimization process in a video

encoder such as HM is not handling the unoccupied

pixels in a proper way

N
m};nJ:ZD?;—F)\R

i—1

4

For a block with both occupied
and unoccupied pixels, all the
pixels are treated as equal
importance

Z. Li, 2019

p.41



Proposed occupancy-map-based RDO

« The unoccupied pixels are not beneficial for the
reconstructed quality of the point cloud at all

* In the proposed solution, a distortion mask is added in the
RDO to handle the unoccupied pixels

N
minJ = Y D; x M; + AR

o .
=1

where M is 1 when the current pixel is occupied, M, is 0
when the current pixel is unoccupied

« This method is applied to intra/inter prediction and SAO

Z. Li, 2019 p.42



Intra prediction

The RDO in intra prediction can be divided into three
steps
— INTRA Mode (Direction) Decision

» The occupancy-map-based RDO is not applied as the
residue bits are not counted in the bit cost

N
mPi,n J = Z SATD; 4+ ARg;r

=1

— Precise mode decision and residue Quadtree decision

» The occupancy-map-based RDO is applied as the residue
bits are counted in the bit cost

N
m}%nJ:ZD@- X M; + AR

=1

Z. Li, 2019
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Inter prediction

The inter mode can be divided into merge 2Nx2N and
the other inter modes
— Merge 2Nx2N/modes comparison

» The occupancy-map-based RDO is applied as the residue
bits are counted in the bit cost

N
m};ngZlDi X M; + AR

— Other inter modes in Integer and fractional motion estimation
processes or merge estimation

» The occupancy-map-based RDO is not applied as the
residue bits are not counted in the bit cost

N
minJ = » | SAD;/SATD; + ARmotion

1=1

Z. Li, 2019
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Simulation setup

« We implement the proposed algorithm in V-PCC
(TMC2-3.0) and the corresponding HEVC reference
software to verify the performance of the proposed
algorithm

 Follow the common test condition
— Random access case and all intra case

e Test point cloud

Test point Number of | Geometry
Frame rate
cloud points precision

Loot ~780000 10bit
RedAndBlack 30 ~700000 10bit RGB
Soldier 30 ~1500000 10bit RGB
Queen 50 ~1000000 10bit RGB
Longdress 30 ~800000 10bit RGB

Z. Li, 2019



Experimental results

Random access case

Test point Geom.BD-Rate Attr.BD-Rate
cloud

D1

D2

Luma Cb Cr

Loot -16.3% -16.4% -24.3% -18.2% -19.3%
RedAndBlac — 6.6% 72%  122% -9.8% -12.3%
Soldier -15.8% -16.0% -16.8% -9.4% -9.0%
Queen -13.4% -13.2% -15.7% -11.2% -10.5%
Longdress -7.5% -7.8% 19% -1.7% -7.2%
Avg. -11.9% -12.1% -15.4% -11.3% -11.7%
Enc. self 101%
Dec. self 99%
Enc. child 88%
Dec. child 88%

Z. Li, 2019
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Experimental results

 All intra case

D1 D2 Luma Cb Cr

Test point Geom.BD-Rate Attr.BD-Rate
cloud

Loot -3.4% -3.5% -14% -05% -0.9%
RedAndBlac 7% 34%  11%  0.9% -1.4%
Soldier -2.9% -3.2% -1.1%  0.7% 1.2%
Queen -2.6% -2.5% -1.2% -1.3% -2.0%
Longdress -2.7% -2.9% -0.7% -0.7% -0.8%
Avg. -2.9% -3.0% -1.1% -05% -0.8%
Enc. self 101%
Dec. self 98%
Enc. child 94%
Dec. child 88%

Z. Li, 2019



Experimental results

 Examples of R-D curves in random access case

Loot D1
72
71
o T
7
£ 60
= 68
=l proposed
a7 —ea—anch
66
1] 1 2 3 4
Geometry bits Millions
Loot Luma
42
40
-4
- 38
£
= 36
g
34
= ved
32
30
0 1 2 3 4 5 [
Attribute bits Millions
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Experimental results analysis

« Under the proposed occupancy-map-based RDO, the
unoccupied pixels will be encoded with much larger
distortions, and therefore we can save the bitrate

(a) Occupancy-map-based RDO (b) Original RDO

Z. Li, 2019 p.49



VPCC Based Plenoptic Coding

« Each point of a general point cloud is associated with
one single color

— This format is not realistic since the colors of the real world
objects may vary along with the change of the view angles

— Example, the colors of the points in the wet floor or the car
surface will vary when the viewing point changes

* The plenoptic point cloud with multiple colors per point
is a more complete 3-D representation and needs to be
compressed efficiently, but no video-based solution yet

Z. Li, 2019 p.50



Proposed Multiview-video Compression Framework

« We first use a similar method as in V-PCC to project
the plenoptic point cloud into a video
— Patch projection; patch packing; patch padding

— The main difference is that multiple attribute videos will be
generated instead of one attribute video

Patch 2D

bounding box L
Projection

plane

0,0

Patch 3D

__r_,/" bounding box

oy
(ul, v

——1 5 Point cloud 3D

- o bounding box
h ~
\ 30 X h
/’—”3"”‘} X

(0, 0,0)
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Proposed Multiview-video Compression Framework

« Examples of projected multiple attribute videos
— Different view angles are very similar despite some pixel differences

View index 2 View index 5

View index 8 View index 11

Z. Li, 2019 p.52



Proposed Multiview-video Compression Framework

« Using Multiview HEVC to compress the videos efficiently
— Encoding structures using 13 views as an example

View direction

P N

00*1{]"‘201‘30"‘40*50"60"70"‘80“'90"100*110"120
h

uon2aap jeaoduwa |,

0y 1 2 3 4 51 61 T 81 9: | |10:] |114] |12,

— Bit allocation process

hierarchical level | frame O | frame 1
0 QPr+1 Q) Pr+4
] QQ Pr+2 QQ Pr+5
2 QPr+3 | QPr+6
5 QFPr+4 | QPr+1
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Block-based group padding

* The unoccupied pixels can be divided into two groups
— Continuous unoccupied pixels
— Isolated unoccupied pixels

Black: isolated unoccupied pixels

' R RAE

EEEEEREEEE
= SN REREE |
"PAllamanns :

Black: continuous unoccupied pixels
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Block-based group padding

* The continuous unoccupied pixels are proposed to be
padded as the average of all the unoccupied pixels
across N views

N-—-1

fis =Y (for+ fir)/(2N),i€0,1,j €0,N -1
k=0

* The isolated unoccupied pixels should not be padded
since it may destroy the spatial continuity of a block
containing both occupied and unoccupied pixels

* Block-based padding decision: the unoccupied pixel is
padded only when a KxK block including the current
pixel as the center pixel is unoccupied

Z. Li, 2019



Occupancy-based RDO

* The block-based group padding can only deal with the
continuous unoccupied pixels instead of the isolated
ones

« The occupancy-map-based RDO is applied to handle
both the continuous and isolated unoccupied pixels
— A mask is added to the RDO when calculating the R-D cost

N
min J = Zl D,;(P) x M; + AR(P)

« This formula is applied to intra prediction, inter
prediction and sample adaptive offset processes

Z. Li, 2019
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Experimental results

« Comparison with the state-of-the-art methods

— RAHT-KLT: 27.0% on average 0 RAHT-KLT Multiview-video Y

Color bits  Y-PSNR | Color bits  Y-PSNR | BD-rate

. g : . 534974 3658 | 800592 3742
« Significant bitrate savings 1102667 3851 | 1469168  39.37
Boxer | 2506516  41.02 | 2646496 4141 1.0%
: ' ' - % 3034 ;
in low/medium bitrate cases . BT e G
. . 505156 3647 | 639904 3771
 Slight performance losses in 1036214 3857 | 1214984 4035
Loot | 2252251  41.16 | 2183806 4274 | -312%
. - 3576056 4291 | 4010464  44.80
hlgh bitrate case 6210303 4521 | 7266152 4651

0 1193244 34.15 1088120 35:37
—_ - - 2361547 36.60 2077560 37.87
V PCC 74.4A on average Soldier 3514995 38.24 3741072 40.13 -26.9%
7227865 41.62 6740544 42.07

« Consistent performance for 11973133 4415 | 12000880 4378
134126 2846 | 515368 3129
' ' 1719585  33.63 | 959752  34.09
all the plenoptlc pomt clouds Thai | 3058823  36.63 | 1744408  36.67 | —427%
4292715 3852 | 3242152 3886
Nie Y Ch r 5509587 40.03 | 6150648  40.89
- _ _ 519371 28.01 942000 33.03
Boxer -624% 61.1% -69.2% 2081546  33.01 1639144 35.37
Loot _67.1% -718% -73.3% Long | 3770193 3619 | 2798792 3740 | —354%
. 5 5245716 3836 | 4972816  30.13
Soldier -13.6% -15.1% -76.1% 0214122 42.67 0176816 41.17
Thaidancer | —82.6% —835% -83.2% 224020 31.82 744512 36.61
o | s _ergm  _wp so 903125 3590 | 1305184  38.80
Longdress 86.3% —86.6% —86.5% Red | 1736193 3843 | 220349 4073 | —16.9%
Redandblack | -78.1% -78.1% -79.1% 3313844 4159 | 3970184  42.44
- - 207
Average | —744% 768% —T71.7% | gElhY Wl | Bl b |
= Average - - - - —27.0%
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Experimental results

* Block-based group padding logic (isolated patch not padded)
— An extra 13.3% performance improvements on average

Name Y Chb Cr
Boxer -18.7% -13.8% -16.5%
Loot -16.5% -157% -15.0%
Soldier —9.6% —1.7% —71.4%
Thaidancer -13.3% -122% -12.6%
Longdress -8.1% —8.2% —8.2%
Redandblack | -13.6% -13.6% -14.1%
Average -13.3% -11.5% -13.6%

— Different influences of block size K
K =4 shows the best R-D performance on average

e Y BD-rate
: K=] K=12 K=4 K=8 K =16
Boxer 105.2% -17.9% -18.7% -18.8% —18.0%
Loot 62.2% -16.0% -165% -16.1% -15.3%
Soldier 60.1% —9.2% -9.6% -9.2% —-8.1%
Thaidancer | -13.4% -133% -133% -128% -11.9%
Longdress —1.6% —8.3% —8.1% —1.7% —1.2%
Redandblack | 64.4% -12.6% -13.6% -13.6% -12.7%
Average 42.5%  -13.0% -133% -129% -12.1%

Z. Li, 2019



Experimental results - Extra gain

* Occupancy-map-based RDO compared with MV-HEVC

— 19.5% on average

Name Y Cb Cr
Boxer —26.4% 1.6% 2.4%
Loot -21.0% ~1.1% 3.5%

Soldier —16.7% 13.2% 13.6%

Thaidancer —15.8% -14.8% —-14.8%
Longdress —17.6%  -7.6% —71.9%
Redandblack | -23.1% -154% —18.6%

Average -19.5%  -1.7% —0.5%
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Experimental results

« R-D curves

Boxer Loot
47 i
47

45
—_ ~ 45
243 = = Multiview-RDO
- =M ultiview-RDO ; 43 -1
= 4 = =8=NMultiview-group
! . Ty z
5 =8=Multiview-group nf.' 41 Muliiview
=5 s e ey " o
>.~ 390 e Multivie w-anchor - 39 RAHT-KLT

i == RAHT-KLT 37 e\ PCC

% e\ - PCC 15

. 0 0.5 15 2 25 3 0.0 05 1.0 L5 2.0 .5

Color bits « 10000000 Color bits x 10000000
(a) (b)
Soldier Thaidancer

46 43

44 41
@ 42 : o =
o == Multiview-RDO E 37 s MV ultivie w-RDO
= " == Multiview-group 3'.'. 35 == Multiview-group
Zz z
E 38 == Multiview-anchor { 13 e W ultivie w-anchor
4 ay
- 36 bmm RAHT-KLT Y e RAHT-KLT

34 e\ -PCC 29 ==V - PCC anchor

32 27

0 2 3 4 5 1] 2 3 4
Color hits x 10000000 Cuolor bits x TO00onon

(c)

(d)
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VPCC Work Summary

« For 3D sensing/Auto-driving, geometry is the key, BTQT
IS a good framework with room for entropy coding
optimization (LSTM), and RDO

« vPCC deals with immersive content, current MPEG
vPCC has many in-efficiency, we introduced advanced
motion model, occupancy map based RDO to
significantly improve the over all performance

 Introduced plenoptic (multi-attributes) point cloud coding
with light-field like coding scheme, inter-view prediction
that yields very good results.
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Summary
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