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Short Bio:

Research Interests:
• Immersive visual communicaiton: light field, point cloud 

and 360 video coding and low latency streaming
• Low Light,  Res and Quality Image Understanding
• What DL can do for compression (intra, ibc, sr, inter, 

end2end)
• What compression can do for DL (compression, 

acceleration, distributed training)

signal processing and 
learning

image understanding visual communication mobile edge computing & communication
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Outline

• Short Self Intro & Research Highlights
• Point Cloud Capture and Applications
• Geometry Compression
• Graph Signal Processing and Attributes Compression
• UMKC PCC work

– Static Geometry Compression: Plane Projection Approximation 
– Dynamic Geometry Compression: Kd-tree decomposition and 

residual coding
• Summary
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Devices Networks Applications

mmWave 5G

D2D

FD-MIMO
4k/8k UHD Video    Free Viewpoint TV 

SDN/MEC

BIGDATA visual intelligence

Samsung VR/AR 

Media Computing & Communication Horizon 
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 Dark Image Enhancement 
• To design network to denoise the low-light image in Bayer 

domain
• To use wavelet decomposition to divide and conquer the 

problem by learning sensor field sub images using separate 
netowks

p.5

Figure 4: [a] Extreme low-light image from Sony a7S II exposed for 1/25 second . [b] 250x intensity scaling of image in [a]. [c] Ground truth image captured with 10 second exposure 
time. [d] Output from SID[]. SID introduced some artifacts around the edge of the chair as shown by green arrow. [e] Output from ResLearning[]. The white region as indicated by 
arrow in image is not properly reconstructed as white compared to that in ground truth image. [f] Our result.
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Decomposition based residual learning from sensor 
field 

• Decomposition of the target image via Wavelet
• Adaptive loss functions for different subbands to exploit strong texture 

prior
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Figure 12: Overview of our wavelet decomposition based network. The first stage learns the decomposed image and used the inverse wavelet to reconstruct the denoised 4 channel image. 
The second stage uses the off-the-shelf ISP to enhances the image and converts into 3 channel sRGB image.
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Experimental Results
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Deep Guided Filtering Deblocking 

• The residual frame can be used as the guidance for the 
in-loop filter of the reconstructed frame
– Larger residuals indicate larger reconstruction errors
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Coding-prior-based in-loop filter

• The residual frame is used as the additional input
• Specific networks for reconstruction and residual

– Residual Network: residual blocks
– Reconstruction Network: down-sampling and up-sampling
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Experimental results

• Comparison with VRCNN

p.10

Intra: 2.1% improvement Inter: 0.7% improvement
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Deep Radar Signal Learning for Privacy Preserving 
Fall Detection 

• Use case:Seniors assisted living - Fall Detection
• Approach:

– 77Ghz portable radar array sensor set up: horizontal and 
vertical scanning, 4x2 Tx/Rx 

– Radar Signal Low Dimension Embedding + LSTM action 
recognition 
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Figure 1. mmWave Radar based Fall Detector
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Neural network processing
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Figure 3. Architecture of RNN with LSTM units
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Extensive experiment

• Multiple human activities detections: 7 categories of 
human activities are labeled: Boxing, Falling, Jogging, 
Jump, Pick up, Stand up & Walking.
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Figure 4. Accuracy of Multiple Human Activities Detecting

Average Inference Time Complexity:
RLDE + LSTM: 0.06042 sec
3DCNN: 7.336 sec
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Outline

• Short Self Intro & Research Overview 
• Point Cloud Capture and Applications
• Geometry Compression
• Graph Signal Processing and Attributes Compression
• UMKC PCC work
• Summary
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What is Point Cloud 

• A collection of Un-ordered points with 
– Geometry: expressed as [x, y, z]
– Color Attributes: [r g b], or [y u v]
– Additional info: normal, timestamp, …etc.

• Key difference from mesh: no order or local topology 
info 
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Point Cloud Capture

• Passive: Camera array stereo depth sensor

• Active: LiDAR, mmWave, TOF sensors
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Point Cloud Inter-Operability with Other Formats

p.17

• Provide true 6-DoF Content capacity
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PCC in MPEG

• Part of the MPEG-Immersive grand vision
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Point Cloud Compression - Geometry

• Can be lossy in both quantization and samples
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Octree Based Point Cloud Compression

•  Octree is a space partition solution
– Iteratively partition the space into sub-blocks. 
– Encoding: 0 if empty, 1 if contains data points
– Level of the tree controls the quantization error

p.20

Credit: Phil Chou, PacketVideo 2016
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Lossless Compression of the Octree with Neural 
Network driven CABAC

•  Tree Structure: 
– DFS scanning of the Octree node byte to have a 

byte stream
– Compression of the byte stream via Arithmetic 

Coding, or shallow neural network PAQ coding
•  Residual Coding:

– Range coding: coding the residual 
   against a ref point (eg., centroids of
   octree leaf node centroids) 
– Plane/Surface approximation coding:
    compute the projection distances to a surface, 
surface can be polynomial or planar.
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Scalable Point Cloud Geometry Coding

p.22

•  Binary Tree embedded Quadtree (BTQT) coding: 
– Binary tree partition to have lossy geometry approximation
– Refine each leaf node with Quadtree/Octree to offer scalable 

details upto near lossless
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Scalable Geometry Coding with BTQT

p.23

• Construct Binary Tree  of Point Cloud 
• R1 = (2L-1)*(2+K) + 6*K, cost of signalling for 

resolution K bits and binary tree depth L
• Intra-Coding i.e. either Quadtree (flat surface) or 

Octree(not flat)
• QT case overhead: R2 = 3*p + 3*q bits, for singalling 

norma at p bits and point at q bits. q < K proportional 
to the leaf node size. 
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Quadtree/Octree Mode Decision 
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1 0 10

0 0 01 1 1 1 1

OctreeQuadtree

Flatness Criterian: 
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Scalable Coding with Quadtree/Octree

p.25

OctreeQuadtree

L = L1

L = L2 < L1

L = L3 < L2
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 Point cloud Visualization

• citytunnel dataset (MERL) – 1.5 km long section of a 
city, 21 millions point

p.26
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Result: Category 1 Geometry Coding Efficiency
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Reconstructed-Zoomed
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• Various reconstruction accuracy:
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Video-based point cloud compression

• Basic steps
– Normal-based projection, frame packing, and frame padding

• Normal-based projection
– Organize the points with similar normal into a patch
– Project each patch to the 3D point cloud bounding box 

p.29
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Video-based point cloud compression

• Frame packing: pack the patches into frames
– Exhaustive search empty space for the current patch
– Patch rotation is supported
– Introduced a lot of sharp edges 

p.30
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VPCC - Texture Padding

• Texture padding: a number of methods are proposed to 
minimize the bitrate of the unoccupied pixels

• Using push-pull algorithm as an example, like dilation
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Video-based point cloud compression

• Basic idea: project a point cloud to a 2-D video for an 
efficient compression

p.32

Geometry

Attribute
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VPCC Motion Model

• The corresponding patches may be put in totally 
different positions in various frames (Green squares)
– The current video codec may be unable to find a good motion 

vector for each block in this case
– The geometry is encoded before the attribute, we can use the 

geometry to derive a better motion vector for attribute
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General 3D to 2D motion model
• Given the 3D motion and the 3D to 2D correspondence, 

we can derive the 2D motion
– g(), f(): 3D to 2D projection in reference and current frames

p.34



Z. Li, 2019

Geometry-based motion prediction

• In the V-PCC, we know the 3D-to-
2D correspondence but do not know 
the 3D motion

• We assume the current frame and 
the reference frame will not change 
dramatically

• The problem is that (x3c,y3c,z3c) 
may not have a corresponding 2D 
point in the reference frame
– We perform motion estimation which 

will increase the encoder and decoder 
complexity
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Auxiliary information based motion prediction

• The previous method has the 
following two disadvantages
– The high encoder and decoder 

complexity
– It can only apply to the attribute

• The auxiliary information 
based motion prediction
– The auxiliary information 

basically provides the coarse 
geometry

– We use the 3D offset plus the 
2D offset
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Experiments setup

• The proposed algorithm is implemented in the V-PCC 
reference software and the corresponding HEVC 
reference software

• We test the all the dynamic point clouds defined in the 
common test condition including loot, redandblack, 
soldier, queen, longdress

• For the geometry, both point-to-point is point-to-plane 
are used

• For the attribute, the qualities of the luma, Cb, and Cr 
are considered
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Experimental results on the overall scheme

• Overall scheme results
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Performance Analysis

• Intra blocks reduce significantly, resulting in taking adv 
of inter coding efficiency
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Subjective quality

p.40

Anchor Proposed
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Occupancy Map Driven Rate-Distortion Optimization

• The current rate distortion optimization process in a video 
encoder such as HM is not handling the unoccupied 
pixels in a proper way

p.41

For a block with both occupied 
and unoccupied pixels, all the 
pixels are treated as equal 
importance



Z. Li, 2019

Proposed occupancy-map-based RDO

• The unoccupied pixels are not beneficial for the 
reconstructed quality of the point cloud at all

• In the proposed solution, a distortion mask is added in the 
RDO to handle the unoccupied pixels

where Mi is 1 when the current pixel is occupied, Mi is 0 
when the current pixel is unoccupied

• This method is applied to intra/inter prediction and SAO

p.42
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Intra prediction

• The RDO in intra prediction can be divided into three 
steps
– INTRA Mode (Direction) Decision 

• The occupancy-map-based RDO is not applied as the 
residue bits are not counted in the bit cost

– Precise mode decision and residue Quadtree decision
• The occupancy-map-based RDO is applied as the residue 

bits are counted in the bit cost

p.43
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Inter prediction

• The inter mode can be divided into merge 2Nx2N and 
the other inter modes
– Merge 2Nx2N/modes comparison

• The occupancy-map-based RDO is applied as the residue 
bits are counted in the bit cost

– Other inter modes in Integer and fractional motion estimation 
processes or merge estimation

• The occupancy-map-based RDO is not applied as the 
residue bits are not counted in the bit cost

p.44
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Simulation setup

• We implement the proposed algorithm in V-PCC 
(TMC2-3.0) and the corresponding HEVC reference 
software to verify the performance of the proposed 
algorithm

• Follow the common test condition
– Random access case and all intra case

• Test point cloud

p.45

Test point 
cloud Frame rate Number of 

points
Geometry 
precision Attributes

Loot 30 ~780000 10bit RGB
RedAndBlack 30 ~700000 10bit RGB

Soldier 30 ~1500000 10bit RGB
Queen 50 ~1000000 10bit RGB

Longdress 30 ~800000 10bit RGB
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Experimental results

• Random access case 
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Test point 
cloud

Geom.BD-Rate Attr.BD-Rate
D1 D2 Luma Cb Cr

Loot -16.3% -16.4% -24.3% -18.2% -19.3%
RedAndBlac

k -6.6% -7.2% -12.2% -9.8% -12.3%

Soldier -15.8% -16.0% -16.8% -9.4% -9.0%
Queen -13.4% -13.2% -15.7% -11.2% -10.5%

Longdress -7.5% -7.8% -7.9% -7.7% -7.2%
Avg. -11.9% -12.1% -15.4% -11.3% -11.7%

Enc. self 101%
Dec. self 99%
Enc. child 88%
Dec. child 88%
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Experimental results
• All intra case

p.47

Test point 
cloud

Geom.BD-Rate Attr.BD-Rate
D1 D2 Luma Cb Cr

Loot -3.4% -3.5% -1.4% -0.5% -0.9%
RedAndBlac

k -2.7% -3.1% -1.1% -0.9% -1.4%

Soldier -2.9% -3.2% -1.1% 0.7% 1.2%
Queen -2.6% -2.5% -1.2% -1.3% -2.0%

Longdress -2.7% -2.9% -0.7% -0.7% -0.8%
Avg. -2.9% -3.0% -1.1% -0.5% -0.8%

Enc. self 101%
Dec. self 98%
Enc. child 94%
Dec. child 88%
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Experimental results

• Examples of R-D curves in random access case
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Experimental results analysis

• Under the proposed occupancy-map-based RDO, the 
unoccupied pixels will be encoded with much larger 
distortions, and therefore we can save the bitrate

p.49
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VPCC Based Plenoptic Coding

• Each point of a general point cloud is associated with 
one single color
– This format is not realistic since the colors of the real world 

objects may vary along with the change of the view angles
– Example, the colors of the points in the wet floor or the car 

surface will vary when the viewing point changes

• The plenoptic point cloud with multiple colors per point 
is a more complete 3-D representation and needs to be 
compressed efficiently, but no video-based solution yet

p.50
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Proposed Multiview-video Compression Framework

• We first use a similar method as in V-PCC to project 
the plenoptic point cloud into a video
– Patch projection; patch packing; patch padding
– The main difference is that multiple attribute videos will be 

generated instead of one attribute video

p.51



Z. Li, 2019

Proposed Multiview-video Compression Framework

• Examples of projected multiple attribute videos
– Different view angles are very similar despite some pixel differences
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Proposed Multiview-video Compression Framework

• Using Multiview HEVC to compress the videos efficiently
– Encoding structures using 13 views as an example

– Bit allocation process
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• The unoccupied pixels can be divided into two groups
– Continuous unoccupied pixels
– Isolated unoccupied pixels

Block-based group padding
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Black: isolated unoccupied pixels

Black: continuous unoccupied pixels
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Block-based group padding

• The continuous unoccupied pixels are proposed to be 
padded as the average of all the unoccupied pixels 
across N views

• The isolated unoccupied pixels should not be padded 
since it may destroy the spatial continuity of a block 
containing both occupied and unoccupied pixels

• Block-based padding decision: the unoccupied pixel is 
padded only when a KxK block including the current 
pixel as the center pixel is unoccupied

p.55
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Occupancy-based RDO

• The block-based group padding can only deal with the 
continuous unoccupied pixels instead of the isolated 
ones

• The occupancy-map-based RDO is applied to handle 
both the continuous and isolated unoccupied pixels
– A mask is added to the RDO when calculating the R-D cost

• This formula is applied to intra prediction, inter 
prediction and sample adaptive offset processes
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Experimental results

• Comparison with the state-of-the-art methods
– RAHT-KLT: 27.0% on average

• Significant bitrate savings
in low/medium bitrate cases
• Slight performance losses in
high bitrate case

– V-PCC: 74.4% on average
• Consistent performance for
all the plenoptic point clouds
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Experimental results

• Block-based group padding logic (isolated patch not padded)
– An extra 13.3% performance improvements on average

– Different influences of block size K
• K = 4 shows the best R-D performance on average 
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Experimental results - Extra gain 

• Occupancy-map-based RDO compared with MV-HEVC
– 19.5% on average
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Experimental results

• R-D curves
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VPCC Work Summary

• For 3D sensing/Auto-driving, geometry is the key, BTQT 
is a good framework with room for entropy coding 
optimization (LSTM), and RDO

• vPCC deals with immersive content, current MPEG 
vPCC has many in-efficiency, we introduced advanced 
motion model, occupancy map based RDO to 
significantly improve the over all performance

• Introduced plenoptic (multi-attributes) point cloud coding 
with light-field like coding scheme, inter-view prediction 
that yields very good results.
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• Q & A
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