
SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA 1

Efficient Projected Frame Padding for Video-based
Point Cloud Compression

Li Li, Member, IEEE, Zhu Li, Senior Member, IEEE, Shan Liu, Houqiang Li, Senior Member, IEEE

Abstract—The state-of-the-art 2D-based point cloud compres-
sion algorithm is the video-based point cloud compression (V-
PCC) developed by the Moving Pictures Experts Group (MPEG).
It first projects the point cloud patch by patch from 3D to 2D
and organizes the projected patches into a video. The video will
then go through High Efficiency Video Coding (HEVC) in order
to be efficiently compressed. However, there are many unoccu-
pied pixels that may have significant influences on the coding
efficiency. These unoccupied pixels are currently padded using
either the average of 4-neighbors or the push-pull algorithm.
While these algorithms are simple, the unoccupied pixels are
not handled in the most efficient way. In this paper, we divide
the unoccupied pixels into two groups: those that should be
occupied and those that should not be occupied. We then design
padding algorithms tailored to each group in order to improve
the performance. The first group is the unoccupied pixels that
should be occupied according to the block-based occupancy map.
We try to pad those pixels using the real points in the original
point cloud to improve the quality of the reconstructed point
cloud. Additionally, we try to maintain the smoothness of each
block so as not to influence the video compression efficiency.
The second group is the unoccupied pixels that were correctly
identified as unoccupied according to the block-based occupancy
map. These pixels are useless for improving the reconstructed
quality of the point cloud. Therefore, we propose padding the
residue of these pixels using the average residue of the occupied
pixels in order to reduce the residue bitrate as much as possible.
The proposed algorithms are implemented in the V-PCC and
the corresponding HEVC reference software. The experimental
results show the proposed algorithms can bring significant bitrate
savings compared with the V-PCC.

Index Terms—Frame padding, High Efficiency Video Coding,
Occupancy map, Point cloud compression, Video-based point
cloud compression

I. INTRODUCTION

The point cloud is a set of 3D points that can be used
to represent a 3D surface. Each point contains some specific
attributes, such as colors, material reflection, and so on. The
point cloud can be used to accurately reconstruct 3D objects
or scenes in virtual reality [1]. Because of this, the point
cloud is the technique choice for scene reconstruction used by
navigation systems [2]. The combination of high resolution

L. Li and Z. Li are with the Department of Computer Science and Electrical
Engineering, University of Missouri-Kansas City, MO 64110, USA. L. Li is
also with the CAS Key Laboratory of Technology in Geo-Spatial Information
Processing and Application System, University of Science and Technology of
China, Hefei 230027, China. Professor Zhu Li is the corresponding author
(e-mail: lil1@umkc.edu; lizhu@umkc.edu).

S. Liu is with the Tencent America, 661 Bryant St, Palo Alto, CA 94301
(e-mail: shanl@tencent.com).

H. Li is with the CAS Key Laboratory of Technology in Geo-Spatial
Information Processing and Application System, University of Science and
Technology of China, Hefei 230027, China (e-mail: lihq@ustc.edu.cn).

2D images and 3D point clouds is promising for the auto-
driving applications. The point cloud is superior than the 360-
degree video reconstruction because it can support 6 degrees of
freedom (DoF) rather than 3 DoF, which results in an enhanced
user experience [3]. For a more thorough review of point cloud
applications, refer to [4].

A typical point cloud captured by 8i using the camera plus
depth sensors has around one million points per frame [5].
Larger numbers of points generally support higher resolution
3D object for reconstruction, however, this also leads to
serious transmission and storage constraints. With each point
represented by 30 and 24 bits for geometry and attribute
information, respectively, a single frame with 1 million points
can be as large as 6M bytes without compression. For a
dynamic point cloud with 30 frames per second, the bitstream
size without compression can be as high as 180M bytes
per second. Therefore, there is an urgent need to compress
dynamic point cloud data more efficiently.

Dynamic point clouds are compressed using one of two
main methods: the 3D-based method and the 2D-based
method. As its name implies, the 3D-based point cloud com-
pression (PCC) compresses the point cloud directly in the 3D
domain. Under this method, the geometry of the first frame
is compressed using either the octree [6] or plane [7] [8]
techniques when some local planes are present. The attribute
is then compressed using a transform such as Graph Fourier
Transform (GFT) [9], Region-based Adaptive Hierarchical
Transform (RAHT) [10] or layered-based prediction [11].
After the first frame is encoded, subsequent frames are com-
pressed using 3D motion estimation (ME) and motion com-
pensation (MC) with the previously coded frames as reference
[12] [13]. However, neighboring frames may have a different
number of points without a one-to-one correspondence for
ME and MC. Therefore, the 3D ME and MC will not be
able to characterize the inter correlations efficiently thus the
compression performance is unsatisfactory.

The 2D-based PCC method attempts to utilize the more
mature video compression standard for 2D video by projecting
the point cloud onto a 2D video. [14] and [15] did this
successfully by projecting the point cloud onto a cube and
a cylinder, respectively. The cube and cylinder were then
unfolded to generate the 2D video. Once the 2D video is
generated, it can be compressed using highly efficient methods,
such as High Efficiency Video Coding (HEVC) [16] since it
is continuous in both spatial and temporal domains. However,
these projections may lead to a number of missing points
that may degrade the reconstructed quality of the point cloud
significantly. To address this, a patch-based projection [11]

2 SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA

Fig. 1. Typical example of the projected attribute frame with unoccupied
pixels padded as black of the DPC “Loot”. Its picture order count is 0.

that divides the point cloud into multiple patches according
to the normals of points is proposed. This method is very
successful and has won the Moving Pictures Experts Group
(MPEG) call for proposals for dynamic PCC [17] in 2017.
Consequently, it has been named video-based PCC (V-PCC)
by the MPEG group. While this V-PCC method was being
standardized, many works focused on improving the initial
version were released [18]. However, the unoccupied pixels
are still appear to be an issue. The reconstructed point cloud
quality and the video compression bitrate need to be consid-
ered simultaneously to solve this.

Fig. 1 shows a typical example of the projected attribute
frame from the point cloud. We can clearly see that black rep-
resents one type of unoccupied pixel. These unoccupied pixels
will be signaled as such in the occupancy map and therefore
will have no influence on the quality of the reconstructed point
cloud at all. However, they may still cost a number of bits if
not properly padded. These pixels will be called unoccupied-
unoccupied pixels in the following sections.

The other type of unoccupied pixels, shown in the magnified
area of Fig. 1, will be signaled as occupied. The occupancy
map is currently signaled as 4× 4 block. However, we cannot
always guarantee the projected points will form an exact 4×4
block, and therefore, the unoccupied pixels typically appear in
the patch boundary. If not properly padded, these unoccupied
pixels will generate noisy points on the decoder side. They are
called unoccupied-occupied pixels in the following sections.

The current methods in V-PCC handle these two cases using
average of the 4-neighbor occupied pixels or the push-pull
padding algorithm [19]. These methods are simple yet inef-
fective. For the unoccupied-unoccupied pixels, these methods
will spend many bits on the residue, yet they are useless
for reconstruction of the point cloud. For the unoccupied-
occupied pixels, these methods will lead to noisy points on
the decoder side, which will significantly reduce the quality
of the reconstructed point cloud.

There are some works focusing on the padding for the
general video [20] or the 360-degree video [21]. Li et al.
[20] proposed a padding method for the frame boundary for
arbitrary resolution video coding. When the picture does not
contain an integer number of macroblocks, some pixels are
padded in a manner that minimizes the bitrate. The pixels

are padded to force the residue of unoccupied pixels to 0.
However, this method only deals with padding regular struc-
tures near the picture boundary. Under the V-PCC framework,
irregular structures within the picture need to be padded.
Li et al. [21] proposed a padding method to maintain a
continuous reference frame for the projected 360-degree video.
This method is unsuitable for the V-PCC framework since it
is designed for reference frame without considering the bitrate
of the padded pixels.

In this paper, we propose a modified V-PCC framework with
two advanced padding methods to deal with the unoccupied-
occupied pixels and unoccupied-unoccupied pixels, respec-
tively. The proposed algorithms mainly have the following key
contributions.

• To deal with the unoccupied-occupied pixels, we propose
padding them with the real points from the original point
cloud as much as possible to avoid the noisy points.
However, those points must be similar enough to the
occupied pixels to avoid a bitrate significant increase.
This scheme can reduce the noisy points while increasing
some new points. This leads to improved performance.

• To deal with the unoccupied-unoccupied pixels, we pro-
pose a content-adaptive method to adaptively pad them
according to the residue of the occupied pixels in order
to reduce the bits spent as much as possible. To be more
specific, we pad the residues of unoccupied-unoccupied
pixels using the average value of the residues of the
occupied pixels in the block. This residue block with
less variation can be coded with a small number of
bits without diminishing the reconstructed quality of the
occupied pixels.

• We implement the proposed algorithms in the V-PCC
and the corresponding HEVC reference software. The
proposed two algorithms can individually lead to sig-
nificant coding gains. They can also be combined into
a unified padding framework to achieve an even better
coding performance.

The rest of this paper is organized as follows. We will
review the related works on the PCC in Section II. The pro-
posed algorithms including the unoccupied-occupied padding
and unoccupied-unoccupied padding will be described in Sec-
tion III. In Section IV, the detailed experimental results will
be shown. Section V will conclude the paper.

II. RELATED WORK

The current works on PCC can be organized into two groups
according to different types of point cloud: static PCC and
dynamic PCC. Currently, it appears there is more focus on
static PCC rather than dynamic PCC. In this paper, we will
focus more on the dynamic PCC. We introduce dynamic PCC
methods in more detail compared with static PCC.

A. Static point cloud compression

Botsch et al. [22] first proposed compressing the geometry
using octree. The point cloud is first bounded by a cube
and then the cube is iteratively divided into 8 sub-cells. The
occupancy of the sub-cells is signaled using 1 byte to indicate

LI et al.: EFFICIENT PROJECTED FRAME PADDING FOR VIDEO-BASED POINT CLOUD COMPRESSION 3

whether the sub-cells have points or not. All the bytes are then
compressed using arithmetic coding. This method is simple yet
effective and is adopted as the base for the MPEG sparse point
cloud compression framework [11]. In addition, Peng and
Kuo [23] proposed encoding the octree using the number of
nonempty cells and the nonempty-child-cell tuples. Schnabel
and Klein [6] further proposed using an approximated plane
to predict these two values. Huang et al. [24] introduced an
occupancy code reordering method to increase the occupancy
compression efficiency. Instead of encoding the occupancy
directly, Kämpe et al. [25] proposed using the directed acyclic
graph (DAG) to reduce the bitrate. Most recently, Rente et al.
[26] proposed a scalable compression scheme with the octree
as the base layer and the graph-based transform approach as
the enhancement layer.

In addition to the octree-based method, Park and Lee
[7] introduced multi-scale planes to approximate the sub-
cells. Smith et al. [27] proposed plane pruning and merging
methods to achieve satisfiable performance under different
target bitrates. Fan et al. [28] introduced Generalized Lloyd
Algorithm (GLA) to generate the level of details to encode
the geometry. Schnabel et al. [29] proposed using plane and
height-maps to compress the point cloud. Golla and Klein
et al. [30] further introduced an occupancy map to enhance
the compression of plane and height-maps. Ahn et al. [31]
proposed using the range image to compress the large-scale
3D point cloud. During the PCC standardization process, Chou
et al. [32] proposed using the plane to approximate the octree
to encode the dense point cloud. Kathariya et al. [8] introduced
quadtree combined with kd-tree to divide the space. In addition
to lossy compression, Zhu et al. [33] introduced Traveling
Salesmen Problem (TSP) to scan the points and compress the
geometry losslessly.

The first group of works focusing on attribute compression
is the transform-based method. Zhang et al. [9] proposed using
GFT to exploit the correlations in the geometry to compress
the attribute. However, deriving the transform kernel requires
solving a very complex eigen problem. Therefore, Queiroz and
Chou [10] introduced RAHT to compress the attribute to get a
better balance between the performance and the complexity. In
essence, RAHT is a weighted wavelet transform related to cell
occupancy. They [34] further provided a Gaussian-Process-
Model-based transform to encode the attribute more efficiently.

The second group of works on attribute compression is
the geometry-structure-based method. In [24], the attribute
of the parent node is used to predict that of the child node
and the residue is encoded using an adaptive quantization
scheme. Dado et al. [35] proposed using palette coding to
compress the attribute derived from the DAG. Morell et al.
[36] introduced k-means to perform color segmentation for
each plane generated from geometry and then the centroid is
entropy coded for compression. During the PCC standardiza-
tion process, Mammou et al. [11] introduced a layer-based
prediction scheme to encode the attribute from coarse to fine
granularities. A lifting scheme is further provided in [37] to
improve the performance. There are also some works focusing
on deriving a layer-based structure using the kd-tree [38] or
the neighboring information [39].

B. Dynamic point cloud compression

Efficiently performing ME and MC is key to exploiting the
correlations between neighboring frames in a dynamic point
cloud. The dynamic PCC methods can be divided into two
groups: 3D-based method and 2D-based method. As its name
implies, the 3D-based method tries to perform the ME and MC
in the 3D domain. Kammerl et al. [40] proposed encoding the
differences in geometry for exploiting the inter correlations
from frame to frame. However, this method is limited since
there is not always a one-to-one point correspondence between
the neighboring frames. Thanou et al. [12] proposed that
the correlations between neighboring frames can be better
characterized in the spectral domain rather than in the pixel
domain and performed 3D ME by feature matching. However,
some points may be unable to find the corresponding points
using this global method. To solve this problem, Queiroz and
Chou [41] proposed dividing the point cloud into multiple
cubes and performed ME and MC cube by cube. However,
this 3D translation motion model cannot characterize motion
efficiently. Mekuria et al. [13] proposed using an iterative
closest point (ICP) method to better characterize the motions.
However, this method is also insufficient at characterizing
motion. While a number of methods have been proposed to
improve the compression efficiency of dynamic PCC, they can
only partially alleviate the problems of 3D ME and MC. Due
to inflexible partitions and inaccurate motion vector predictors,
efficiently performing ME and MC is still an issue with
dynamic 3D point clouds.

2D video compression efficiency is known to be very high.
It effectively makes full use of the inter correlations using
the flexible partitions and accurate motion vector prediction.
Therefore, there are some works trying to project the point
cloud to the 2D domain to utilize the video compression
standard. Lasserre et al. [42] and Budagavi et al. [43] proposed
sorting the points directly into a video using an octree or point
position in a lossless manner. However, the videos generated
are unsuitable for the current video compression framework
since the spatial and temporal correlations are limited. To solve
this problem, Schwarz et al. [14] and He et al. [15] proposed
projecting the point cloud to video using cubes or cylinders
and unfolding it into a 2D video. The generated videos are
easy to encode, however, many points are lost due to occlusion.
Mammou et al. [11] proposed a patch-based method to project
the point cloud to the cube patch by patch and organized all the
patches into a video. As we have mentioned in Section I, this is
a successful method and won the MPEG call for proposals for
the dynamic PCC. Nonetheless, the projected video introduces
many unoccupied pixels among the patches and therefore, is
still unsuitable for current video compression standards. In
this paper, we propose padding the unoccupied pixels using
methods that result in a significant performance improvement.

III. PROPOSED ALGORITHMS

In this section, we will introduce the proposed padding
methods. The padding of unoccupied-occupied pixels will be
introduced in subsection III-A. The padding of the unoccupied-
unoccupied pixels will be introduced in subsection III-B.

4 SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA

TABLE I
PERFORMANCE OF THE PIXEL-BASED OCCUPANCY COMPARED WITH THE

4× 4-BLOCK-BASED OCCUPANCY.

Test Geom.BD-GeomRate Attr.BD-AttrRate
point cloud D1 D2 Luma Cb Cr

Loot 95.1% 78.9% –1.4% –2.4% –4.4%
RedAndBlack 98.5% 74.0% –1.9% –4.2% –2.5%

Soldier 115.0% 97.7% –4.9% –11.6% –8.8%
Queen 129.6% 103.7% –9.5% –12.6% –9.8%

LongDress 90.0% 72.1% –2.0% –2.7% –1.5%
Avg. 105.6% 85.3% –3.9% –6.7% –5.4%

16

1
6

Fig. 2. Original padding process. The colored three 4×4 blocks are signaled
as occupied. The orange small squares represent the occupied pixels.

A. Padding of unoccupied-occupied pixels

As mentioned in Section I, the block-based occupancy map
is the reason why the unoccupied-occupied pixels exist. There-
fore, before introducing the proposed padding of unoccupied-
occupied pixels, we first compare the performance of the pixel-
based occupancy with the 4 × 4-block-based occupancy as
shown in Table I. From Table I, we can see that the pixel-
based occupancy can bring an average of 3.9%, 6.7%, and
5.4% performance improvements compared with the 4 × 4-
block-based occupancy for the Luma, Cb, and Cr components.
However, for geometry, it leads to 105.6% and 85.3% bitrate
increase for D1 and D2, respectively, due to the increase in
size of the occupancy. According to our observation, the bits
of the pixel-level occupancy show a 4 times increase above
the 4× 4-block-level occupancy. For this reason, unoccupied-
occupied pixels exist under the V-PCC framework.

Fig. 2 shows the padding process of the unoccupied-
occupied pixels of a typical 16 × 16 block in the original
V-PCC framework. Each small square represents a pixel. The
colored three 4 × 4 blocks are signaled as occupied. The
orange small squares are the occupied pixels. The unoccupied-
occupied pixels are iteratively padded using the 4-neighbor
occupied pixels. The green pixels are first padded using the
average of the 4-neighbor orange pixels as indicated by the
arrows. The blue pixels are then padded using the average
of the 4-neighbor green pixels. Finally, the yellow pixels are
padded using the blue pixels. This method creates a smooth
block that can effectively reduce the bitrate. However, the
padded pixels create noisy points in the reconstructed point

Fig. 3. Search range illustration of the proposed unoccupied-occupied
padding.

cloud, which show as an increase in distortions, particularly
on point-to-plane errors. Graziosi and Tabatabai [44] proposed
using the uncompressed full resolution occupancy map to
guide the padding process. Ke et al. [45] introduced patch
expansion in the boundary to avoid data loss. However, these
methods are temporally costly and lead to images that increase
the bitrate significantly.

In this paper, we propose padding the unoccupied-occupied
pixels with the real points in the original point cloud to reduce
the distortion. The real points can come from the missing
points in the point cloud or the duplicate points from the other
patches. However, this algorithm may lead to serious bitrate
increases if they are not properly handled. Therefore, we aim
to find a better balance between the increased bitrate and the
reconstructed quality of the point cloud.

Before padding of the unoccupied-occupied pixels, we
should first locate the to-be-padded 4× 4 blocks. These 4× 4
blocks should include both occupied and unoccupied pixels.
While locating those 4× 4 blocks, we simultaneously record
the 3D coordinate of the first occupied pixel (x3q, y3q, z3q)
in the block. This pixel will be used as the center point when
searching for padding candidates in 3D space. It can also be
used to anchor the smoothness of the current block, and to
prevent the encoder from spending extra bits on the current
4× 4 block.

After the to-be-padded 4 × 4 block is located, we then try
to find the candidate pixels to be padded. We use the first
occupied pixel with coordinate (x3q, y3q, z3q) as the starting
point. We then find the nearest candidate points using kd-tree
[46]. In the kd-tree, every leaf is a k-dimensional point. Every
non-leaf node can be thought as a hyperplane that splits the
space into two parts.

Consider the extreme case where the number of nearest
points K to be searched as shown in Fig. 3. Each small square
represents a pixel. The large blue outline square represents the
4×4 block to be padded. The red square is the template point.
The green square is the farthest to-be-padded point compared
with the template point. According to the circle in Fig. 3, we
need to search 61 points in 2D space. Since a point cloud
is essentially surface of an object, each 2D point will not
correspond to more than 2 points in 3D space in most cases.

LI et al.: EFFICIENT PROJECTED FRAME PADDING FOR VIDEO-BASED POINT CLOUD COMPRESSION 5

0

5000

10000

15000

20000

25000

1 11 21 31 41 51 61 71 81 91 101 111 121

N
u

m
b

e
r
 o

f
P

o
in

ts

index

Loot

Fig. 4. Histogram of choosing different nearest points of the dynamic point
cloud “Loot”.

(u0, v0) u1

v1

(0, 0, 0)

z

x

y

n

(0, 0)

Patch 2D

bounding box

0

r0

s0

Patch 3D

bounding box

Projection

plane

Point cloud 3D

bounding box

o

(u0, v0)

(x, y)

(x, y)

(x3, y3, z3)

Fig. 5. Illustration of the projection from 3D to 2D coordinates.

So, we need to search 122 points in 3D space. To avoid some
extreme cases that each 2D point may correspond to more
than 2 points, we choose to search the nearest 128 points to
maximize the performance. To better illustrate the reason of
choosing the nearest 128 points, we show the histogram of the
index of the various nearest points selected of the point cloud
“Loot” as shown in Fig. 4. We can see that indices larger
than 80 will rarely be selected, thus making 128 as a good
threshold.

We must satisfy two objectives. First, the padded points
must be real points from the original point cloud. Second,
the bitrate of the current block cannot significantly increase.
To do this, we must satisfy the following two constraints.
First, the tangential shift and the bi-tangential shift of the
candidate points should be the same as the to-be-padded
position (y3, z3). This guarantees that the padded points are
real points as shown in Fig. 5. We assume that the current
patch is projected to the yoz plane. Given a to-be-padded
position with coordinate (x, y), the start position of the current
patch (u0, v0), and the start tangential and bi-tangential shifts
of the current patch (s0, r0), the tangential and bi-tangential
shifts of the candidate points (y3, z3) can be calculated as{

y3 = s0 + (x− u0)
z3 = r0 + (y − v0)

(1)

After deriving the tangential shift and the bi-tangential shift of
the to-be-padded position, we cycle through the 128 candidates
to find those satisfying the constraint.

Second, in order to maintain the smoothness of the current
block, the difference between the to-be-padded candidates and
the occupied pixels should be small. Therefore, we only pad
the candidate pixel if the absolute difference between the depth
of the to-be-padded pixel x3 and the query point x3q is smaller
than a given threshold θ,

|x3− x3q| < θ. (2)

Fig. 6. Typical comparison between the padded frame (left) and the to-be-
padded frame (right).

Larger θ values will yield more points to be padded as
unoccupied-occupied pixels. This leads to higher quality point
cloud reconstruction. However, the smoothness of the current
block will become less and the bitrate will increase. We set
θ to 2.0 as the baseline value, then analyze the performance
of the proposed algorithm for different values of θs in the
experimental results.

There may be multiple points satisfying the above two
constraints. We choose one based on the projection mode of
the current patch. In the current patch-based method, each
point cloud will be projected to 2 frames, d0 and d1. The
projection mode determines whether the current patch projects
the minimum value or the maximum value to d0. If the
minimum value is projected onto d0, we cycle through the
candidate points to find which has the minimum x3. If the
maximum value is projected onto d0, we first find an available
candidate point satisfying the two constraints and then cycle
through the candidates to find which has the maximum x3.
After finding the most appropriate point (x3, y3, z3), we then
project it onto (x, y) using the following formula, x = z3− s0 + u0

y = y3− r0 + v0
h(x, y) = x3− δ0

(3)

where h(x, y) is the geometry value padded.
The above process pads part of the unoccupied-occupied

pixels. However, some unpadded pixels still remain. We then
pad those using the average value of the 4-neighbor pixels.
Fig. 6 gives a comparison between the padded frame (left)
and the to-be-padded frame (right). As can be seen from the
figure, despite being padded with real points, the block is
quite smooth. Furthermore, the padding may come from either
missing points or padded points from other patches. This will
be verified in the experimental results. Either way, the padded
pixels improve the reconstructed quality of the point cloud.
After using the above steps to generate a video from the
original point cloud, the resulting video will be encoded to
finish the compression process.

We have also attempted padding d1 with a different value
from d0 using a similar process. However, due to the bitrate
increase, the experimental results suggest a degradation in the
overall PCC performance. Therefore, we pad d1 with the same
value as d0 for the unoccupied-occupied pixels. To clearly

6 SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA

Algorithm 1 Unoccupied-occupied padding algorithm
1: Input: Center point (x3q, y3q, z3q), To-be-padded posi-

tion (x, y), Projection mode PM
2: Output: Padded value h(x, y)
3: Find the nearest K points of (x3q, y3q, z3q)
4: Calculate the tangential and bi-tangential shifts of the

candidate points (y3, z3) according to (1)
5: x3 = infinitDepth ▷ x3 initialized as the infinite depth
6: for i← 1 to K do
7: if PM = 0 and |x3i − x3q| < θ and x3i < x3 then

▷ x3i is the ith candidate
8: x3 = x3i
9: else if PM = 1 then

10: if x3 = infinitDepth and |x3i−x3q| < θ then
11: x3 = x3i
12: else if |x3i − x3q| < θ and x3i > x3 then
13: x3 = x3i
14: end if
15: end if
16: end for
17: Calculate h(x, y) according to (3)

16

1
6

(a) Part unoccupied

16

1
6

(b) Full unoccupied

Fig. 7. Original padding of the unoccupied-unoccupied pixels for the
geometry.

delineate the proposed unoccupied-occupied algorithm above,
we list the process steps in Algorithm 1.

B. Padding for unoccupied-unoccupied pixels

The padding for unoccupied-unoccupied pixels in the V-
PCC framework can be divided into two groups: geometry
padding and attribute padding. The geometry padding is based
on 16 × 16 block as shown in Fig. 7. If part of the 16 × 16
block is occupied as shown in Fig. 7 (a), the 16 × 16 block
will be padded iteratively using the average of the 4-neighbor
occupied pixels. If the whole 16 × 16 block is unoccupied
as shown in Fig. 7 (b), the 16 × 16 block will be padded
from the neighboring pixels using horizontal copy or vertical
copy if the horizontal neighboring pixels are not available.
The attribute padding is based on the push-pull algorithm
as shown in Fig. 8 [47]. The push-pull algorithm [19] is an
efficient pyramid algorithm for the interpolation of scattered
data. In addition, a sparse linear model based method [48],
a harmonic background filling method [49], and a smoothed
push-pull algorithm [50] are proposed to improve the padding

Push

Push

Push Pull

Pull

Pull

Fig. 8. Original padding of the unoccupied-unoccupied pixels for the attribute.

Original Prediction

-

Padded Residue

--

Residue

- ---
PredictionPadded Original

Fig. 9. Basic idea of the unoccupied-unoccupied padding.

of the attribute. However, all these methods can only improve
the padding of the attribute by about 3% compared with the
original push-pull algorithm. After the geometry and attribute
padding, the unoccupied-unoccupied pixels of d0 and d1 are
padded using the average [51] in order to code d1 with fewer
bits.

The original padding methods for geometry and attribute are
quite simple and have guaranteed the smoothness of the block
if it is independently used as a prediction unit (PU). However,
if the unoccupied and occupied pixels are combined into one
PU, the unoccupied pixels may prevent the occupied pixels
from finding the corresponding block. Even if the occupied
pixels can find the corresponding block, the unoccupied pixels
may not be adequately predicted, leading to a significant
bitrate increase. In this paper, we try to adaptively pad the
unoccupied pixels resulting in the smallest bitrate.

Fig. 9 shows the basic process of the proposed adaptive
padding method for the unoccupied-unoccupied pixels using
16 × 16 block. Each small block represents a 4 × 4 block.
The small blocks with blue edges in the original PU represent
the unoccupied 4×4 blocks. First, we can obtain a prediction
block from intra or inter prediction. In intra prediction, the
prediction block is obtained based on the intra prediction
direction. In inter prediction, the prediction block is obtained
using motion compensation based on the motion information.

LI et al.: EFFICIENT PROJECTED FRAME PADDING FOR VIDEO-BASED POINT CLOUD COMPRESSION 7

Then we can obtain the residue block through subtracting
the prediction block from the original block. After that, the
unoccupied pixels of the residue block are padded to minimize
the bitrate of the current PU. Finally, the unoccupied pixels of
the original PU are updated according to the prediction and the
padded residue. Using this process, the padding result will vary
as the prediction varies. Therefore, the proposed unoccupied-
unoccupied padding method is considered a content-adaptive
method.

The key step of the proposed unoccupied-unoccupied
padding process is correctly padding the residue of the unoc-
cupied pixels in order to minimize the bits cost of the current
PU,

min
Resuo

R(Reso, Resuo) (4)

where Reso and Resuo are the sets of the occupied
and unoccupied pixels of the residue block, respectively.
R(Reso, Resuo) is the bitrate of the residue block related to
both the occupied and unoccupied pixels. Since multiple pixels
in the current block need to be padded, iterating through all
possible combination of padding pixels to find the optimized
solution may increase the encoder complexity significantly. In
this work, we propose intuitive methods to reduce the bitrate.

The first method is to pad the residues of unoccupied pixels
with zeros. This method is similar to the picture boundary
padding in [20]. However, the zeros padding combined with
the residue of the occupied pixels may increase the variance
of the transformed residue block. This makes the transformed
residue block difficult to compress. Additionally, the exper-
iments show this method leads to significant performance
losses for the Chroma components.

The second method we propose is to pad the residues of the
unoccupied pixels with the average residue of the occupied
pixels. This method has shown to maintain or increase the
smoothness of all of the residue blocks, and is therefore more
suitable for transform. Furthermore, this method can improve
the performance significantly for both the Luma and Chroma
components. In the special case where all the pixels of the
current PU are unoccupied, the residues of all the pixels will
be padded as 0.

The proposed method is implemented in the mode decision
processes of the HEVC reference software for both the intra
and inter predictions. The proposed method is implemented
in a different way to deal with various kinds of distortions.
When the distortion is measured by the sum of the absolute
difference (SAD) between the original block and the prediction
block, it is determined by the distortion of the occupied pixels,
and the padding method becomes irrelevant. If we pad the
unoccupied pixels of the residue block with 0, the SAD will
only be determined by the occupied pixels. If we pad the
unoccupied pixels of the residue block with the average value
of the occupied residues, the SAD of the whole block is equal
to the SAD of the occupied pixels divides the ratio of occupied
pixels to total pixels. Since this ratio is a fixed value, the SAD
of the block essentially is still determined by the occupied
pixels. To prevent frequently changing the residue and original
values of the current block, we add a mask to the current block

TABLE II
CHARACTERISTICS OF THE TEST DYNAMIC POINT CLOUD

Test Frame Number Geometry Attributespoint cloud rate of points precision
Loot 30 ∼ 780000 10 bit RGB

RedAndBlack 30 ∼ 700000 10 bit RGB
Soldier 30 ∼ 1500000 10 bit RGB
Queen 50 ∼ 1000000 10 bit RGB

LongDress 30 ∼ 800000 10 bit RGB

to calculate the SAD of the occupied pixels only,

SAD =

N∑
i=1

|Orgi − Predi| ×Mi (5)

where N is the number of pixels in the current block. Orgi and
Predi are the original and prediction values of the pixel i in
the current block. Mi is the mask determined by the occupancy
map. Mi is 1 when pixel i is occupied and is 0 when pixel i
is unoccupied.

When the distortion of the current block is measured using
either the sum of the absolute transformed difference (SATD)
between the original block and the prediction block or the sum
of the squared difference (SSD) between the original block and
the reconstruction block, we follow the residue and original
padding processes as shown in Fig. 9. Since these methods rely
on either a Hadamard transform or discrete cosine transform
(DCT), estimating the impact padding has on the distortion
after transform becomes difficult. However, since we only have
limited search points for calculating the SATD or SSD, the
frequently changing of the residue and original values of the
current block does not increase the complexity obviously.

In our previous work [52], we proposed an occupancy-map-
based rate distortion optimization (RDO) to ignore the distor-
tion of unoccupied pixels. In this work, we propose an adaptive
padding scheme to reduce the bitrate of blocks containing the
unoccupied pixels. Both schemes provide significant bitrate
savings from the V-PCC anchor. Additionally, the unoccupied-
unoccupied padding algorithm can have similar effects on
the distortions of the unoccupied-unoccupied pixels as the
occupancy-map-based RDO. However, combining these two
algorithms together leads to further improvement of the rate
distortion (RD) performance.

IV. EXPERIMENTAL RESULTS

A. Simulation setup

The proposed algorithms are implemented in the state-of-
the-art video-based point cloud compression (V-PCC) refer-
ence software TMC2-4.0 [53] and the corresponding HEVC
reference software HM16.18-SCM8.7 [54] to compare with
the V-PCC anchor to demonstrate its effectiveness. We test
both the lossy geometry, lossy attributes, random access (RA)
and all intra (AI) cases to demonstrate the effectiveness of
the proposed algorithms. We perform the experiments on the
five dynamic point clouds defined in the V-PCC common test
condition (CTC) [55]. We test all frames of the dynamic point
clouds for the combination of the proposed padding algo-
rithms. When measuring the performance of each algorithm

8 SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA

TABLE III
PERFORMANCE OF THE COMBINATION OF THE PROPOSED PADDING

ALGORITHMS IN RA CASE

Test Geom.BD-GeomRate Attr.BD-AttrRate
point cloud D1 D2 Luma Cb Cr

Loot –18.4% –17.5% –20.6% –17.7% –21.0%
RedAndBlack –10.6% –9.7% –11.9% –14.9% –11.6%

Soldier –16.2% –15.9% –11.1% –5.7% –5.3%
Queen –21.3% –21.5% –15.7% –17.8% –15.7%

LongDress –11.6% –10.9% –4.4% –4.7% –4.1%
Avg. –15.6% –15.1% –12.7% –12.2% –11.5%

Enc. self 105%
Dec. self 99%

Enc. child 95%
Dec. child 95%

TABLE IV
PERFORMANCE OF THE COMBINATION OF THE PROPOSED PADDING

ALGORITHMS IN AI CASE

Test Geom.BD-GeomRate Attr.BD-AttrRate
point cloud D1 D2 Luma Cb Cr

Loot –9.3% –8.0% –9.1% –1.6% –5.9%
RedAndBlack –7.9% –7.2% –8.0% –6.8% –6.7%

Soldier –5.1% –4.5% –1.8% 6.1% 6.3%
Queen –8.9% –9.1% –8.7% –9.4% –8.5%

LongDress –7.7% –7.2% –3.2% –2.2% –1.9%
Avg. –7.8% –7.2% –6.2% –2.8% –3.4%

Enc. self 108%
Dec. self 99%

Enc. child 100%
Dec. child 100%

individually, we test on a 32 frame subset of the point cloud.
The detailed characteristics of the dynamic point clouds are
shown in Table II. We test all five rate points from low bitrate
(r1) to high bitrate (r5) [55]. Since the bitrates generated by
the anchor and the proposed algorithms are not the same, the
Bjontegaard-Delta-rate (BD-rate) [56] is used to compare the
respective RD performances.

For the geometry, we report the BD-rates for both point-to-
point PSNR (D1) and point-to-plane PSNR (D2) [55]. For the
attribute, the BD-rates for the Luma, Cb, and Cr components
are reported. For the complexity, we made changes to both the
PCC and HEVC reference softwares, and therefore report the
encoding and decoding time change for both the PCC (self)
and HEVC (child), separately. In the following subsections,
we first introduce the overall performance of the combination
of the proposed padding algorithms. Then we report the per-
formance and analysis of the proposed algorithms individually.

B. Overall performance

Table III and Table IV show the performances of the
combination of the proposed algorithms in RA and AI cases,
respectively. The value of θ is set as 2.0 to obtain a good
trade-off between the reconstructed point cloud quality and
the bitrate. From Table III, we can see that the combination of
the proposed algorithms can achieve an average of 15.6% and
15.1% bitrate savings compared with the V-PCC anchor for the
D1 and D2 in RA case, respectively. The combination of the
proposed algorithms can bring performance improvements of

TABLE V
PERFORMANCE OF THE COMBINATION OF THE PROPOSED PADDING

ALGORITHMS IN RA CASE TESTED WITH 32 FRAMES

Test Geom.BD-GeomRate Attr.BD-AttrRate
point cloud D1 D2 Luma Cb Cr

Loot –24.2% –23.5% –25.7% –19.0% –27.1%
RedAndBlack –10.9% –9.6% –12.0% –14.8% –11.9%

Soldier –19.6% –19.4% –15.2% –10.1% –7.7%
Queen –18.5% –18.7% –15.6% –15.3% –11.8%

LongDress –11.4% –10.7% –5.5% –6.3% –5.7%
Avg. –16.9% –16.4% –14.8% –13.1% –12.8%

Enc. self 106%
Dec. self 99%

Enc. child 95%
Dec. child 95%

TABLE VI
PERFORMANCE OF THE COMBINATION OF THE PROPOSED PADDING

ALGORITHMS IN AI CASE TESTED WITH 32 FRAMES

Test Geom.BD-GeomRate Attr.BD-AttrRate
point cloud D1 D2 Luma Cb Cr

Loot –9.9% –8.3% –8.7% 0.0% –5.3%
RedAndBlack –8.3% –7.2% –7.5% –6.5% –6.7%

Soldier –6.8% –6.0% –2.8% 6.1% 5.9%
Queen –7.9% –8.3% –8.8% –9.4% –7.8%

LongDress –7.7% –7.3% –3.4% –2.2% –1.9%
Avg. –8.1% –7.4% –6.2% –2.4% –3.1%

Enc. self 108%
Dec. self 99%

Enc. child 101%
Dec. child 100%

12.7%, 12.2%, and 11.5% for Luma, Cb, and Cr components,
respectively. From Table IV, we can see that the combination
of the proposed algorithms can lead to an average of 7.8%
and 7.2% bitrate savings compared with the V-PCC anchor
for the D1 and D2 in AI case, respectively. The attributes are
improved on average by 6.2%, 2.8%, and 3.4% for Luma,
Cb, and Cr components. We also show some examples of the
RD curves as in Fig. 10 to better illustrate the performance in
both RA and AI cases. Obvious performance improvements
are also observed in the RD curves for both the geometry
and attribute. From these experimental results, the proposed
algorithms bring a clear performance improvement. We also
show that performance improvements when testing 32 frames
in Table V and Table VI are consistent with the performance
of the whole point cloud.

The encoding and decoding complexity of the proposed
algorithms are shown in Table III and Table IV. From these
two tables, we can see that the proposed algorithms lead
to a few complexity increases for the V-PCC encoder. This
is because of the nearest points search in the unoccupied-
occupied padding algorithm in both the RA and AI cases. For
the V-PCC decoder, the decoder is unchanged and therefore
no obvious complexity change is observed. For the HEVC
encoder, the proposed algorithm will decrease in complexity
since the unoccupied-unoccupied padding algorithm use fewer
RD operations, especially for the unoccupied blocks in RA
case. For the HEVC decoder, the complexity is decreased
because it chooses larger blocks for MC. For the AI case,

LI et al.: EFFICIENT PROJECTED FRAME PADDING FOR VIDEO-BASED POINT CLOUD COMPRESSION 9

65

66

67

68

69

70

71

72

0 10 20 30 40 50

D
1

-P
S

N
R

 (
d

B
)

Geomery bits Millions

Geometry RA

Loot Proposed Padding

Loot V-PCC Anchor

Soldier Proposed Padding

Soldier V-PCC Anchor

(a) Geometry RA

27

29

31

33

35

37

39

41

43

0 50 100 150

Y
-P

S
N

R
 (

d
B

)

Attribute bits Millions

Attribute RA

Loot Proposed Padding

Loot V-PCC Anchor

Soldier Proposed Padding

Soldier V-PCC Anchor

(b) Attribute RA

65

66

67

68

69

70

71

72

73

0 10 20 30 40 50

Y
-P

S
N

R
 (

d
B

)

Geometry bits Millions

Geometry AI

RedAndBlack Proposed Padding

RedAndBlack V-PCC Anchor

Queen Proposed Padding

Queen V-PCC Anchor

(c) Geometry AI

30

32

34

36

38

40

42

0 50 100 150 200 250

Y
-P

S
N

R
 (

d
B

)

Attribute bits Millions

Attribute AI

RedAndBlack Proposed Padding

RedAndBlack V-PCC Anchor

Queen Proposed Padding

Queen V-PCC Anchor

(d) Attribute AI

Fig. 10. Some examples of the RD curves.

the proposed algorithm does not lead to obvious complexity
changes for either the HEVC encoder or decoder.

C. Performance of the unoccupied-occupied padding

The performances of the occupied-unoccupied padding
method with θ equal to 2.0 in RA and AI cases are shown
in Table VII and Table VIII, respectively. We can see that the
padding of the unoccupied-occupied pixels can lead to an aver-
age of 2.2% and 4.3% performance improvements for D1 and
D2 in RA case, respectively. The proposed algorithm achieves
similar bitrate savings for the geometry in AI case. However,
the proposed algorithm leads to a few performance losses
especially for the Chroma components since the attribute video
becomes less smooth after padding. For HEVC, the proposed
algorithm will not lead to an observable complexity increase
for both the encoder and decoder. For the V-PCC reference
software, the proposed algorithm may lead to a slight encoder
complexity increase caused by finding of the nearest neighbors
of the current point. We also show one typical example of
the subjective quality comparison as shown in Fig. 11. Here,
we can obviously see that the proposed unoccupied-occupied
padding can partially reduce the noisy points and lead to better
subjective quality for the point cloud.

The reason behind the the improvements of the proposed
unoccupied-occupied padding can be seen by comparing the
number of missed points after projection and the number of
duplicate points after reconstruction between the anchor and
the proposed unoccupied-occupied padding as shown in IX.
Note that the number of duplicate points after reconstruction
is the average of all the rate points from r1 to r5. From
Table IX, we can see that the number of missed points

TABLE VII
PERFORMANCE OF THE PADDING OF THE UNOCCUPIED-OCCUPIED PIXELS

IN RA CASE TESTED WITH 32 FRAMES

Test Geom.BD-GeomRate Attr.BD-AttrRate
point cloud D1 D2 Luma Cb Cr

Loot –1.4% –3.9% 0.2% 0.4% 1.2%
RedAndBlack –1.5% –4.7% –0.4% –0.2% –0.1%

Soldier –1.3% –3.6% 0.6% 3.2% 4.8%
Queen –4.5% –4.7% 0.0% 1.5% 1.0%

LongDress –2.5% –4.7% –1.6% –2.1% –1.6%
Avg. –2.2% –4.3% –0.2% 0.6% 1.1%

Enc. self 107%
Dec. self 100%

Enc. child 101%
Dec. child 100%

TABLE VIII
PERFORMANCE OF THE PADDING OF THE UNOCCUPIED-OCCUPIED PIXELS

IN AI CASE TESTED WITH 32 FRAMES

Test Geom.BD-GeomRate Attr.BD-AttrRate
point cloud D1 D2 Luma Cb Cr

Loot –1.3% –3.9% 0.0% –0.1% 0.5%
RedAndBlack –1.7% –4.7% 0.2% 0.3% 0.4%

Soldier –1.2% –4.0% 0.3% 1.2% 1.2%
Queen –4.4% –4.8% 1.2% 0.8% 1.3%

LongDress –1.2% –3.5% –0.3% 0.3% 0.4%
Avg. –2.0% –4.2% 0.3% 0.5% 0.7%

Enc. self 107%
Dec. self 99%

Enc. child 100%
Dec. child 100%

10 SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA

(a) Origin (b) Anchor (c) Proposed

Fig. 11. Typical example of the subjective quality comparison. The test point
cloud “Loot” with picture order count 1000 under r4 in RA case.

TABLE IX
COMPARISONS OF THE NUMBER OF MISSED POINTS AND DUPLICATE

POINTS UNDER THE ANCHOR AND THE PROPOSED
UNOCCUPIED-OCCUPIED PADDING IN RA CASE

Test Missed points Duplicate points
point cloud anchor proposed anchor proposed

Loot 109 106 440461 446985
RedAndBlack 983 931 387439 394802

Soldier 348 330 559069 571041
Queen 4598 4520 306302 315097

LongDress 1323 1258 421661 427674

decreases. This means there is a greater number of real
points in the reconstructed point cloud, which leads to its
improved reconstructed quality. Additionally, the number of
duplicate points increases, which indicates that the proposed
unoccupied-occupied padding is reducing the number of noisy
points. These two observations clearly explain the improve-
ments of the proposed algorithm.

We compare the average performances of the proposed
algorithm using different θs in RA case as shown in Table X.
We can see that the proposed algorithm with θ equal to 1.0
will lead to geometry compression improvements compared
with the V-PCC anchor. However, due to the limited number
of padded points, the performance improvement is limited.
We can also see from Table X that the proposed algorithm
with θ equal to 3.0 can lead to slightly higher performance
improvements compared to θ equal to 2.0 for the geometry
under the D2 quality measurement. However, this value of θ
will lessen the smoothness and lead to a bitrate increase for
the attribute. Therefore, we choose θ as 2.0 in order to achieve
a better balance between the compression performances of the
geometry and attribute.

We also compare the performance of changing the number
of nearest points K as shown in Table XI. As we can
see, the RD performance keeps improving as the value of
K increases. Simultaneously, the improvement speed keeps
decreasing. Therefore, 128 is a suitable threshold for the
proposed padding algorithm.

TABLE X
COMPARISONS OF THE PROPOSED UNOCCUPIED-OCCUPIED PADDING IN

RA CASE USING DIFFERENT θS

θ
Geom.BD-GeomRate Attr.BD-AttrRate

D1 D2 Luma Cb Cr
1.0 –0.6% –1.2% 0.1% 0.5% 0.4%
2.0 –2.2% –4.3% –0.2% 0.6% 1.1%
3.0 –1.9% –5.3% 1.5% 3.1% 2.7%

TABLE XI
COMPARISONS OF THE PROPOSED UNOCCUPIED-OCCUPIED PADDING IN

RA CASE USING DIFFERENT NUMBER OF NEAREST POINTS K

K
Geom.BD-GeomRate Attr.BD-AttrRate

D1 D2 Luma Cb Cr
16 –1.6% –3.2% 0.0% 0.7% 0.2%
32 –2.0% –4.0% –0.1% 1.2% 1.4%
64 –2.2% –4.3% –0.1% 0.8% 0.3%

128 –2.2% –4.3% –0.2% 0.6% 1.1%

D. Performance of the unoccupied-unoccupied padding

Table XII and Table XIII show the performance of the
proposed unoccupied-unoccupied padding in RA and AI cases,
respectively. In RA case, we can see that the proposed algo-
rithm is able to achieve an average of 13.0% and 12.1% bitrate
savings for the D1 and D2 compared to the V-PCC anchor. For
the attribute, the proposed algorithm can bring an average of
15.7%, 13.6% and 13.2% performance improvements for the
Luma, Cb, and Cr components, respectively. In AI case, the
proposed algorithm can bring an average of 4.1% and 2.8%
RD performance improvements for the D1 and D2 compared
to the V-PCC anchor. For the attribute, average performance
improvements of 6.4%, 2.5% and 3.2% are observed for the
Luma, Cb, and Cr components. The experimental results ob-
viously demonstrate that the proposed unoccupied-unoccupied
padding algorithm brings significant bitrate savings compared
with the V-PCC anchor. Additionally, we can see that the
proposed unoccupied-unoccupied padding brings much better
performance improvement in RA case compared with that in
AI case. In essence, the unoccupied pixels are a result of the
extrapolation of the occupied pixels. Therefore, the influences
of the unoccupied-unoccupied pixels on the inter prediction
are larger than that of the intra prediction.

To better explain the performance of the proposed
unoccupied-unoccupied padding, we compare the recon-
structed attribute of the proposed unoccupied-unoccupied
padding with the V-PCC anchor as shown in Fig. 12. We
can see from the red squares that the unoccupied-unoccupied
pixels are padded to match the MV of the occupied pixels.
Consequently, the bits of the current PU can be significantly
reduced without influencing the quality of the occupied pixels.
Also, when all the pixels of the current PU are unoccupied, the
unoccupied pixels will pad with zero residues to minimize the
bitrate. This figure obviously demonstrates that the proposed
unoccupied-unoccupied padding can minimize the bitrate of
the unoccupied pixels, and thus can improve the performance
significantly.

We also compare the proposed unoccupied-unoccupied
padding with average padding to the proposed algorithm with

LI et al.: EFFICIENT PROJECTED FRAME PADDING FOR VIDEO-BASED POINT CLOUD COMPRESSION 11

TABLE XII
PERFORMANCE OF THE AVERAGE PADDING OF THE

UNOCCUPIED-UNOCCUPIED PIXELS IN RA CASE TESTED WITH 32 FRAMES

Test Geom.BD-GeomRate Attr.BD-AttrRate
point cloud D1 D2 Luma Cb Cr

Loot –20.1% –19.4% –26.4% –21.1% –25.7%
RedAndBlack –6.3% –4.2% –13.2% –16.4% –13.3%

Soldier –16.0% –15.6% –16.8% –9.1% –9.1%
Queen –14.9% –15.1% –16.7% –15.4% –12.7%

LongDress –7.2% –6.1% –5.2% –5.9% –5.4%
Avg. –13.0% –12.1% –15.7% –13.6% –13.2%

Enc. self 101%
Dec. self 99%

Enc. child 95%
Dec. child 95%

TABLE XIII
PERFORMANCE OF THE AVERAGE PADDING OF THE

UNOCCUPIED-UNOCCUPIED PIXELS IN AI CASE TESTED WITH 32 FRAMES

Test Geom.BD-GeomRate Attr.BD-AttrRate
point cloud D1 D2 Luma Cb Cr

Loot –6.4% –4.1% –8.9% 0.8% –4.7%
RedAndBlack –4.0% –2.0% –7.7% –7.4% –7.2%

Soldier –2.9% –1.6% –2.9% 5.5% 6.0%
Queen –3.0% –3.3% –9.2% –9.1% –7.9%

LongDress –3.9% –3.0% –3.1% –2.4% –2.1%
Avg. –4.1% –2.8% –6.4% –2.5% –3.2%

Enc. self 101%
Dec. self 101%

Enc. child 102%
Dec. child 100%

zero padding in RA case as shown in Table XIV. Here, we
can see that the average padding can bring an average of over
4% bitrate improvements for the geometry. For the attribute,
the average padding can bring an average of 1.3%, 17.4%, and
13.3% bitrate savings for the Luma, Cb, and Cr components.
The experimental results clearly demonstrate the effectiveness
of the average padding compared with the zero padding. In
addition, we can see that the average padding can achieve the
best performance for the chroma components, the second best
for the geometry, and the worst for the Luma component. This
is in essence determined by the smoothness of the content.
For chroma, as the smoothest of the three components, the
zero padding may lead to serious unsmoothness in the residue,
leading to a significant increase in the bitrate.

In addition, we present the RD performance improvement
when the proposed unoccupied-unoccupied padding is com-
bined with the occupancy-map-based RDO [52] in RA case in
Table XV. Comparing Table XII and Table XV, we can see
that combining the proposed algorithm with the occupancy-
map-based RDO brings extra 1.9% bitrate savings for the
geometry under the quality measurements for both D1 and D2.
For the attribute, RD performance improvements of an extra
1.7%, 0.9%, and 0.6% for Luma, Cb, and Cr components are
achieved, respectively. These experimental results obviously
demonstrate that through explicitly ignoring the distortions of
the unoccupied pixels, we can obtain some extra performance
improvements.

(a) V-PCC anchor padding

(b) Proposed unoccupied-unoccupied padding

Fig. 12. Typical examples of the reconstructed frames with POC 2 from the
DPC “Loot” encoded under bitrate r4 defined in the CTC using V-PCC anchor
and the proposed unoccupied-unoccupied padding, respectively.

TABLE XIV
PERFORMANCE OF THE AVERAGE PADDING COMPARED WITH THE ZERO

PADDING IN RA CASE

Test Geom.BD-GeomRate Attr.BD-AttrRate
point cloud D1 D2 Luma Cb Cr

Loot –2.9% –2.8% –0.1% –20.2% –19.8%
RedAndBlack –3.7% –3.4% –1.9% –19.8% –2.1%

Soldier –4.3% –4.1% –2.3% –24.9% –26.4%
Queen –6.8% –6.7% –2.0% –16.9% –13.7%

LongDress –3.6% –3.5% –0.5% –5.5% –4.3%
Avg. –4.3% –4.1% –1.3% –17.4% –13.3%

Enc. self 100%
Dec. self 99%

Enc. child 102%
Dec. child 100%

E. Comparisons of the individual algorithms with the combi-
nation of them

From the experimental results shown above, we can see
that the combination of the proposed algorithms outperforms
the two, individually. For geometry, the combination is better
than the sum of the two algorithms, individually. When we
pad the unoccupied-occupied pixels with the real points from
the original point cloud, the currently occupied block has a
higher probability of finding a corresponding block. The higher
probability results in higher performance improvement for the

12 SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA

TABLE XV
PERFORMANCE OF THE PADDING OF THE UNOCCUPIED-UNOCCUPIED
PIXELS COMBINED WITH OCCUPANCY-MAP-BASED RDO IN RA CASE

Test Geom.BD-GeomRate Attr.BD-AttrRate
point cloud D1 D2 Luma Cb Cr

Loot –22.6% –21.6% –28.5% –22.5% –25.7%
RedAndBlack –8.3% –6.2% –14.7% –14.5% –15.1%

Soldier –17.7% –17.3% –18.3% –11.4% –8.4%
Queen –16.7% –16.8% –18.3% –17.8% –13.6%

LongDress –9.4% –8.3% –7.1% –6.3% –6.4%
Avg. –14.9% –14.0% –17.4% –14.5% –13.8%

Enc. self 100%
Dec. self 99%

Enc. child 97%
Dec. child 95%

geometry. For attribute, however, the increased variance of
the residue block due to the unoccupied-occupied pixels may
reduce the coding efficiency. Therefore, the performance of
the combination is worse than the sum of the performance of
the two algorithms.

V. CONCLUSION

In this paper, we first point out that the unoccupied pixels
in the state-of-the-art video-based point cloud compression
(V-PCC) may lead to the inefficiency of the video com-
pression. We divide the unoccupied pixels into two groups
based on whether they are signaled as occupied or unoc-
cupied: the unoccupied-occupied pixels and the unoccupied-
unoccupied pixels. For the unoccupied-occupied pixels, we
propose padding them using the real points in the original point
cloud to increase the number of projected points and reduce the
number of duplicate points. For the unoccupied-unoccupied
pixels, we propose padding them adaptively according to the
corresponding prediction block and residue block to reduce
the bitrate as much as possible. The proposed algorithms are
implemented in the reference softwares of the state-of-the-art
V-PCC and the corresponding video compression framework
High Efficiency Video Coding. The experimental results show
that the proposed algorithms can bring about 16% bitrate
savings for the geometry and attribute compared with the V-
PCC anchor. The experimental results obviously demonstrate
the effectiveness of the proposed algorithms. In the future,
we will further investigate more suitable video compression
frameworks for the projected videos from the dynamic point
cloud.

REFERENCES

[1] G. Bruder, F. Steinicke, and A. Nüchter, “Poster: Immer-
sive Point Cloud Virtual Environments,” in 2014 IEEE
Symposium on 3D User Interfaces (3DUI), 2014, pp.
161–162.

[2] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-View
3D Object Detection Network for Autonomous Driving,”
in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 1907–1915.

[3] M.-L. Champel, R. Doré, and N. Mollet, “Key Factors for
a High-Quality VR Experience,” in 2017 SPIE Optical
Engineering and applications, vol. 10396, 2017.

[4] C. Tulvan, R. Mekuria, Z. Li, and S. Laserre, “Use Cases
for Point cloud compression (PCC),” Document ISO/IEC
JTC1/SC29/WG11 MPEG2015/N16331, Geneva, CH,
Jun. 2016.

[5] E. d’Eon, B. Harrison, T. Myers, and P. A. Chou,
“Input to Ad Hoc Groups on MPEG Point Cloud
Compression and JPEG PLENO,” Document ISO/IEC
JTC1/SC29/WG11 m40059, Geneva, Switzerland, Jan.
2017.

[6] R. Schnabel and R. Klein, “Octree-based Point-Cloud
Compression,” in Proceedings of the 3rd Eurographics /
IEEE VGTC Conference on Point-Based Graphics, 2006,
pp. 111–121.

[7] S. Park and S. Lee, “Multiscale Representation and
Compression of 3-D Point Data,” IEEE Transactions on
Multimedia, vol. 11, no. 1, pp. 177–183, Jan. 2009.

[8] B. Kathariya, L. Li, Z. Li, J. Alvarez, and J. Chen,
“Scalable Point Cloud Geometry Coding with Binary
Tree Embedded Quadtree,” in 2018 IEEE International
Conference on Multimedia and Expo (ICME), 2018, pp.
1–6.

[9] C. Zhang, D. Florncio, and C. Loop, “Point Cloud
Attribute Compression with Graph Transform,” in 2014
IEEE International Conference on Image Processing
(ICIP), Oct. 2014, pp. 2066–2070.

[10] R. L. de Queiroz and P. A. Chou, “Compression of
3D Point Clouds Using a Region-Adaptive Hierarchical
Transform,” IEEE Transactions on Image Processing,
vol. 25, no. 8, pp. 3947–3956, Aug. 2016.

[11] K. Mammou, A. M. Tourapis, D. Singer, and Y. Su,
“Video-based and Hierarchical Approaches Point Cloud
Compression,” Document ISO/IEC JTC1/SC29/WG11
m41649, Macau, China, Oct. 2017.

[12] D. Thanou, P. A. Chou, and P. Frossard, “Graph-Based
Compression of Dynamic 3D Point Cloud Sequences,”
IEEE Transactions on Image Processing, vol. 25, no. 4,
pp. 1765–1778, Apr. 2016.

[13] R. Mekuria, K. Blom, and P. Cesar, “Design, Implemen-
tation, and Evaluation of a Point Cloud Codec for Tele-
Immersive Video,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 27, no. 4, pp. 828–
842, Apr. 2017.

[14] S. Schwarz, M. M. Hannuksela, V. Fakour-Sevom,
N. Sheiki-Pour, V. Malamalvadakital, and A. Aminlou,
“Nokias Response to CfP for Point Cloud Compression
(Category 2),” Document ISO/IEC JTC1/SC29/WG11
m41779, Macau, China, Oct. 2017.

[15] L. He, W. Zhu, and Y. Xu, “Best-Effort Projection based
Attribute Compression for 3D Point Cloud,” in 2017 23rd
Asia-Pacific Conference on Communications (APCC),
Dec. 2017, pp. 1–6.

[16] G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand,
“Overview of the High Efficiency Video Coding (HEVC)
Standard,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 22, no. 12, pp. 1649–1668,

LI et al.: EFFICIENT PROJECTED FRAME PADDING FOR VIDEO-BASED POINT CLOUD COMPRESSION 13

Dec. 2012.
[17] M. Preda, “Report on PCC CfP Answers,” Document

ISO/IEC JTC1/SC29/WG11 w17251, Macau, China,
Oct. 2017.

[18] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Ce-
sar, P. A. Chou, R. A. Cohen, M. Krivokua, S. Lasserre,
Z. Li, J. Llach, K. Mammou, R. Mekuria, O. Nak-
agami, E. Siahaan, A. Tabatabai, A. M. Tourapis, and
V. Zakharchenko, “Emerging MPEG Standards for Point
Cloud Compression,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 9, no. 1,
pp. 133–148, Mar. 2019.

[19] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F.
Cohen, “The Lumigraph,” in Proceedings of the 23rd An-
nual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH ’96, 1996, pp. 43–54.

[20] M. Li, Y. Chang, F. Yang, and S. Wan, “Rate-Distortion
Criterion Based Picture Padding for Arbitrary Resolution
Video Coding Using H.264/MPEG-4 AVC,” IEEE Trans-
actions on Circuits and Systems for Video Technology,
vol. 20, no. 9, pp. 1233–1241, Sept. 2010.

[21] L. Li, Z. Li, X. Ma, H. Yang, and H. Li, “Advanced
Spherical Motion Model and Local Padding for 360
Video Compression,” IEEE Transactions on Image Pro-
cessing, vol. 28, no. 5, pp. 2342–2356, May 2019.

[22] M. Botsch, A. Wiratanaya, and L. Kobbelt, “Efficient
High Quality Rendering of Point Sampled Geometry,”
in Proceedings of the 13th Eurographics workshop on
Rendering, 2002, pp. 53–64.

[23] J. Peng and C.-C. J. Kuo, “Geometry-Guided Progressive
Lossless 3D Mesh Coding with Octree (OT) Decompo-
sition,” ACM Transactions on Graphics (TOG), vol. 24,
no. 3, pp. 609–616, 2005.

[24] Y. Huang, J. Peng, C. . J. Kuo, and M. Gopi, “A Generic
Scheme for Progressive Point Cloud Coding,” IEEE
Transactions on Visualization and Computer Graphics,
vol. 14, no. 2, pp. 440–453, Mar. 2008.

[25] V. Kämpe, E. Sintorn, and U. Assarsson, “High resolu-
tion sparse voxel DAGs,” ACM Transactions on Graphics
(TOG), vol. 32, no. 4, p. 101, 2013.

[26] P. de Oliveira Rente, C. Brites, J. Ascenso, and F. Pereira,
“Graph-Based Static 3D Point Clouds Geometry Cod-
ing,” IEEE Transactions on Multimedia, vol. 21, no. 2,
pp. 284–299, Feb. 2019.

[27] J. Smith, G. Petrova, and S. Schaefer, “Progressive
Encoding and Compression of Surfaces Generated from
Point Cloud Data,” Computers & Graphics, vol. 36, no. 5,
pp. 341–348, 2012.

[28] Y. Fan, Y. Huang, and J. Peng, “Point Cloud Compression
Based on Hierarchical Point Clustering,” in 2013 Asia-
Pacific Signal and Information Processing Association
Annual Summit and Conference. IEEE, 2013, pp. 1–7.

[29] R. Schnabel, S. Möser, and R. Klein, “Fast Vector Quan-
tization for Efficient Rendering of Compressed Point-
Clouds,” Computers & Graphics, vol. 32, no. 2, pp. 246–
259, 2008.

[30] T. Golla and R. Klein, “Real-Time Point Cloud Com-
pression,” in 2015 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), Sept. 2015,
pp. 5087–5092.

[31] J. Ahn, K. Lee, J. Sim, and C. Kim, “Large-Scale 3D
Point Cloud Compression Using Adaptive Radial Dis-
tance Prediction in Hybrid Coordinate Domains,” IEEE
Journal of Selected Topics in Signal Processing, vol. 9,
no. 3, pp. 422–434, Apr. 2015.

[32] P. A. Chou, M. Krivokuca, G. Cernigliaro, and E. dEon,
“Point Cloud Compression using a Blockable Geometry
Representation and Region Adaptive Hierarchical Trans-
form,” ISO/IEC JTC1/SC29/WG11 m41645, Macau,
China, Oct. 2017.

[33] W. Zhu, Y. Xu, L. Li, and Z. Li, “Lossless Point
Cloud Geometry Compression via Binary Tree Partition
and Intra Prediction,” in 2017 IEEE 19th International
Workshop on Multimedia Signal Processing (MMSP),
Oct. 2017, pp. 1–6.

[34] R. L. de Queiroz and P. A. Chou, “Transform Coding for
Point Clouds Using a Gaussian Process Model,” IEEE
Transactions on Image Processing, vol. 26, no. 7, pp.
3507–3517, 2017.

[35] B. Dado, T. R. Kol, P. Bauszat, J.-M. Thiery, and
E. Eisemann, “Geometry and Attribute Compression for
Voxel Scenes,” in Computer Graphics Forum, vol. 35,
no. 2, 2016, pp. 397–407.

[36] V. Morell, S. Orts, M. Cazorla, and J. Garcia-Rodriguez,
“Geometric 3D Point Cloud Compression,” Pattern
Recognition Letters, vol. 50, pp. 55–62, 2014.

[37] K. Mammou, A. Tourapis, J. Kim, F. Robinet,
V. Valentin, and Y. Su, “Lifting Scheme for Lossy
Attribute Encoding in TMC1,” Document ISO/IEC
JTC1/SC29/WG11 m42640, San Diego, CA, US, Apr.
2018.

[38] V. Zakharchenko, B. Kathariya, and J. Chen, “[G-PCC]
[CE13.15] Response on Level of Detail Generation using
Binary Tree for Lifting Transform,” Document ISO/IEC
JTC1/SC29/WG11 m45966, Marrakech, MA, Jan. 2019.

[39] K. Mammou, A. Tourapis, and J. Kim, “[G-PCC][New
Proposal] Efficient Low-Complexity LOD Generation,”
ISO/IEC JTC1/SC29/WG11 m46188, Marrakech, MA,
Jan. 2019.

[40] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli,
M. Beetz, and E. Steinbach, “Real-Time Compression
of Point Cloud Streams,” in 2012 IEEE International
Conference on Robotics and Automation, May 2012, pp.
778–785.

[41] R. L. de Queiroz and P. A. Chou, “Motion-Compensated
Compression of Dynamic Voxelized Point Clouds,” IEEE
Transactions on Image Processing, vol. 26, no. 8, pp.
3886–3895, Aug. 2017.

[42] S. Lasserre, J. Llach, C. Guede, and J. Ricard, “Tech-
nicolors Response to the CfP for Point Cloud Compres-
sion,” Document ISO/IEC JTC1/SC29/WG11 m41822,
Macau, China, Oct. 2017.

[43] M. Budagavi, E. Faramarzi, T. Ho, H. Najaf-Zadeh,
and I. Sinharoy, “Samsungs Response to CfP for Point
Cloud Compression (Category 2),” Document ISO/IEC
JTC1/SC29/WG11 m41808, Macau, China, Oct. 2017.

14 SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA

[44] D. Graziosi and A. Tabatabai, “[V-PCC] New Con-
tribution on Geometry Padding,” Document ISO/IEC
JTC1/SC29/WG11 m47496, Geneva, CH, Mar. 2019.

[45] E.-C. Ke, S.-P. Wang, Y.-T. Tsai, C.-C. Lin, C.-L. Lin,
Y.-H. Lee, J.-L. Lin, Y.-C. Chang, and C.-C. Ju, “[V-
PCC] [New proposal] Patch Expansion for Improving
Visual Quality,” Document ISO/IEC JTC1/SC29/WG11
m47772, Geneva, CH, Mar. 2019.

[46] J. L. Bentley, “Multidimensional Binary Search Trees
Used for Associative Searching,” Communications of the
ACM, vol. 18, no. 9, pp. 509–517, 1975.

[47] D. Graziosi, “[V-PCC] TMC2 Optimal Texture Packing,”
Document ISO/IEC JTC1/SC29/WG11 m43681, Ljubl-
jana, SI, Jul. 2018.

[48] K. Mammou, J. Kim, V. Valentin, F. Robinet,
A. Tourapis, and Y. Su, “CE2.12 Related: Sparse Linear
Model Based Padding Method for the Texture Images,”
Document ISO/IEC JTC1/SC29/WG11 m44837, Macau,
CH, Oct. 2018.

[49] D. Graziosi, “V-PCC New Proposal (related to CE2.12):
Harmonic Background Filling,” Document ISO/IEC
JTC1/SC29/WG11 m46212, Marrakesh, MA, Jan. 2019.

[50] E. Faramarzi and M. Budagavi, “[V-PCC] [New Pro-
posal] Improved Texture Padding,” Document ISO/IEC
JTC1/SC29/WG11 m46202, Marrakesh, MA, Jan. 2019.

[51] S. Rhyu, Y. Oh, and J. Woo, “PCC CE2.13 Report on
Texture and Depth Padding Improvement,” Document
ISO/IEC JTC1/SC29/WG11 m43667, Ljubljana, SI, Jul.
2018.

[52] L. Li, Z. Li, S. Liu, and H. Li, “Occupancy-Map-
Based Rate Distortion Optimization for Video-Based
Point Cloud Compression,” arXiv:1902.04169, 2019.

[53] “Point Cloud Compression Category 2
Reference Software, TMC2-4.0,” http://mpegx.int-
evry.fr/software/MPEG/PCC/TM/mpeg-pcc-tmc2.git,
accessed: 2019.

[54] “High Efficiency Video Coding
Test Model, HM-16.18+SCM8.7,”
https://hevc.hhi.fraunhofer.de/svn/svn HEVCSoftware/tags/,
accessed: 2019.

[55] S. Schwarz, G. Martin-Cocher, D. Flynn, and M. Buda-
gavi, “Common Test Conditions for Point Cloud
Compression,” Document ISO/IEC JTC1/SC29/WG11
w17766, Ljubljana, Slovenia, Jul. 2018.

[56] G. Bjontegaard, “Calculation of Average PSNR Dif-
ferences between RD-Curves,” Document VCEG-M33,
Austin, Texas, USA, Apr. 2001.

