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Abstract—The video-based point cloud compression (V-PCC)
is the state-of-the-art dynamic point cloud compression method
developed by the Moving Pictures Experts Group (MPEG).
It projects the point cloud patch by patch to its bounding
box and organizes all the patches into a video to utilize the
efficient video coding framework. However, the unoccupied pixels
among different patches will lead to inefficiency of the video
compression. First, the unoccupied pixels are treated equal to
the occupied pixels in the rate distortion optimization process.
However, the unoccupied pixels are useless for the reconstructed
quality of the point cloud. Second, the edges of the occupied
and unoccupied pixels can divide a coding unit into arbitrary
shapes. Consequently, they are not well-characterized by the
regular partitions supported in the video coding framework.
Therefore, we propose using occupancy-map-based rate distor-
tion optimization and partition to deal with these two problems.
First, the occupancy map is used as a mask to ignore the
distortions of the unoccupied pixels when calculating the rate
distortion cost of a specified block. This strategy is applied to both
intra prediction, inter prediction, and the sample adaptive offset
to boost the performance. Second, we propose an occupancy-
map-based partition to divide the occupied pixels from different
patches and the unoccupied pixels into different prediction units
(PUs). The motions of occupied PUs are then predicted using
the auxiliary information. The unoccupied PU is finally padded
using the approach that generates the geometry frames. The
proposed algorithms are implemented in the V-PCC and High
Efficiency Video Coding reference software. The experimental
results show that the algorithms can individually contribute
significant performance improvements compared with the V-
PCC. Additionally, their combination can achieve even more
bitrate savings than the sum of the individual algorithms.

Index Terms—Occupancy map, Partition, Point cloud com-
pression, Rate distortion optimization, Video-based point cloud
compression

I. INTRODUCTION

A point cloud is a set of 3D points that can be used to
represent a 3D surface. Each point contains some specific
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attributes, such as colors, material reflection, and so on. A
point cloud can be applied in many virtual reality scenarios
as it can be used to reconstruct a 3D object or scene [1].
For example, the point cloud has the potential for 6 degree-
of-freedom (DoF) virtual reality, which can achieve a much
better user experience than the 3 DoF [2]. It can be used for 3D
immersive telepresence [3] as it can be seamlessly integrated
and rendered in 3D virtual worlds enabling a convergence
between real and virtual realities. Additionally, the point cloud
shows considerable potential in auto driving applications by
means of its capability to render 3D scenes [4].

Along with the fast development of the point cloud capture
technologies, we now have point clouds with millions of points
per frame that can render objects with high resolution. On the
one hand, the increase in the number of points is the premise
of the widespread use of the point cloud. On the other hand,
it introduces many burdens for the transmission and storage
of the point cloud. For example, one static point cloud (SPC)
can have as many as one million points. If 30 and 24 bits are
used to represent the geometry and attribute, the original size
of one SPC is approximated as 6Mbytes. For a 30 frames per
second (fps) dynamic point cloud (DPC), the bitrate will be
as high as 180Mbytes per second, which is too much for both
transmission and storage. Therefore, there is an urgent need
to efficiently compress the point cloud, especially DPC.

The current methods to compress the DPC can be roughly
divided into two groups. The first group is the 3D-based
method that compresses the DPC in the 3D domain. The 3D-
based method usually compresses the geometry of the first
frame using octree [5] or binary tree [6], and the attribute of
the first frame using transforms such as the Graph Fourier
Transform (GFT) [7] or the Region Adaptive Hierarchical
Transform (RAHT) [8]. Then, the following frames are di-
vided into multiple cubes. Each cube is predicted from the
previous frame using 3D motion estimation (ME) and motion
compensation (MC) [9]. However, various frames of a DPC
may have a different number of points, and the points do not
have explicit correspondence. Therefore, the 3D ME and MC
are rather challenging problems and have not yet been well
handled.

The second group is the 2D-based method that projects the
point cloud to 2D space and organizes the projected point
cloud into videos to compress. Some works on this type pro-
pose projecting the point cloud directly to a cube or cylinder
and organizing the projected faces into a video [10] [11]. These
methods can make the projected video with very high spatial
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Fig. 1. Typical example of the projected attribute frame of the DPC
“RedAndBlack”, whose picture order count is 16.

and temporal continuities. However, they may lead to the
loss of many points due to occlusion. To solve this problem,
the state-of-the-art 2D-based method projects the point cloud
patch-by-patch to its bounding box, and organizes all the
patches into a video to utilize a video compression framework
[12] such as High Efficiency Video Coding (HEVC) [13]. This
2D-based point cloud compression method is the winner of the
Moving Picture Experts Group (MPEG) call for proposals for
the DPC compression [14]. It is named as the video-based
point cloud compression (V-PCC) during the standardization
process. After the rise of the V-PCC, many technologies such
as auxiliary information coding and patch organization have
been proposed to further improve its compression performance
[15].

Although the V-PCC achieves much better compression
performance compared with the previous DPC compression
methods, it produces many unoccupied pixels among various
patches to the projected videos, as shown in Fig. 1. We fill all
the unoccupied pixels with 0 to better explain the problems.
First, the unoccupied pixels are useless for the reconstructed
quality of the point cloud as indicated by the blue squares.
However, they are treated equal to the occupied pixels in the
rate distortion optimization (RDO) process. In particular, under
the V-PCC, various patches may be put in different positions
in neighboring frames. The unoccupied pixels may cost many
bits as they correspond to the occupied pixels in the co-located
positions in the reference frame. Second, the edges of the
occupied and unoccupied pixels can divide a coding unit (CU)
into arbitrary shapes. They cannot be well-characterized by the
regular partitions supported in the video coding framework.
Even if the binary-tree-quad-tree (BTQT) [16] and triangle
partition [17] are considered to be part of the next generation
video compression standard [18], they are still unable to solve
the problem of the irregular partitions in the patch boundary.

Therefore, in this paper, we propose using the auxiliary
information to derive a new rate distortion (RD) criterion and
partition to solve these two problems. Since the auxiliary infor-
mation including the occupancy map and the patch information
is encoded before the geometry and attribute videos, it can
be used to improve the compression efficiency. The proposed

methods mainly have the following contributions.
• The occupancy map is used as a mask when calculating

the distortion of a specified block during the RDO pro-
cess. In this way, the distortion of the unoccupied pixels
is ignored. The encoder will choose the best mode to
reduce the bit cost of the unoccupied pixels. This strategy
is applied to intra prediction, inter prediction, and the
sample adaptive offset (SAO) to boost the performance.

• The occupancy map among different patches naturally
forms a partition to divide the blocks into occupied
prediction units (PUs) from various patches and an un-
occupied PU. The occupied PUs are predicted by finding
an accurate motion vector predictor (MVP) using the
auxiliary information and performing ME based on the
MVP. The unoccupied PU is predicted using the approach
that generates the geometry frame with each 16×16 block
as the basic unit.

• These two technologies are independent of each other
and can provide significant performance improvements
individually. Since the occupancy-map-based partition
can provide a good prediction that is beneficial for the
occupancy-map-based RDO process, they can be com-
bined together to contribute more bitrate savings.

The occupancy-map-based RDO has been proposed in our
previous work [19]. In this paper, we provide more analy-
sis and experimental results about the occupancy-map-based
RDO. Additionally, we propose a completely new occupancy-
map-based partition. The experimental results show that the
combination of these two technologies can lead to much more
performance improvement than the sum of the bitrate savings
provided by them individually.

This paper is organized as follows. In Section II, we will
provide an overview of the literature of point cloud compres-
sion. The proposed occupancy-map-based RDO and partition
will be introduced in detail in Section III and Section IV,
respectively. Section V will show the detailed experimental
results. Section VI will conclude the paper.

II. RELATED WORK

Point cloud compression works can be divided into two
groups: SPC compression and DPC compression. Since this
paper is more focused on the DPC compression, we will
provide a more detailed review on the DPC compression than
the SPC compression.

A. Static point cloud compression

The SPC compression algorithms compress the geometry
and attribute separately. The most common geometry com-
pression algorithm is the octree-based compression. Botsch et
al. [20] first proposed dividing the point cloud into 8 subcells
in each split. One byte is used to represent whether each
subcell is occupied or not. All the bytes are then compressed
using arithmetic coding to further improve the compression
efficiency. After the octree-based compression was proposed,
there were many variations on this topic. For example, Peng
et al. [21] proposed encoding the number of nonzero subcells
N and the combination of the subcells CN

8 to represent each
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byte. Schnabel and Klein [5] provided a prediction scheme to
encode the occupancy of the subcells efficiently. Dricot et al.
[22] introduced RDO to determine whether a cell should split
or not. In addition to the octree-based methods, Chou et al.
[23] proposed using the blockable geometry to represent the
dense point cloud. As some surfaces of the point clouds are
planes, Kathariya et al. [6] and Park et al. [24] proposed using
a plane instead of octree to describe the surface. Limuti et al.
[25] introduced a cellular automata block reversible transform
to encode the geometry.

Many works on attribute compression are transform-based
methods. Zhang et al. [7] proposed using the GFT to utilize
the geometry information to exploit the correlations among
the attributes. However, the GFT may produce significant com-
plexity burdens to the encoder and decoder as a complex eigen-
problem needs to be solved. Therefore, Queiroz and Chou
[8] introduced RAHT to compress the attribute to achieve a
better balance between the performance and the complexity.
In addition to the transform-based methods, a distance-based
layered coding structure to compress the attribute from coarse
to fine granularities was proposed by Mammou et al. [12]. The
reconstructed points from the coarse point cloud were used to
predict the point cloud with finer granularity. They further
proposed using a lifting scheme to improve the performance
[26]. Within this topic, some works tried to use the binary
tree [27] or some other criteria [28] to determine the points in
each layer and improve the coding performance. Additionally,
Mekuria et al. [29] introduced a snake scanning method to
organize the attribute into 8 × 8 blocks. An image is then
constructed by the blocks and compressed using JPEG. Xu
et al. [30] proposed several scanning modes to convert the
attribute into 8 × 8 blocks and used RDO to select the best
one. Nasiri et al. [31] proposed an intra prediction method
with irregular references and introduced GFT to compact the
residue.

B. Dynamic point cloud compression

The DPC compression focuses on how to use ME and MC
to exploit the correlations among neighboring frames. As we
have mentioned in Section I, the DPC scheme can be divided
into the 3D-based method and 2D-based method. For the 3D-
based method, Kammerl et al. [32] proposed compressing the
difference of the octree occupancy to improve the geometry
compression efficiency. Daribo et al. [33] proposed a curve-
based partitioning and exploited the correlations using curve-
based intra and inter prediction. However, these methods are
inefficient as there are no explicit correspondences among
various points in neighboring frames. Thanou et al. [34]
formulated the 3D ME problem as a feature-matching problem
using the spectral graph wavelet descriptors. They considered
that the temporal correlations could be better characterized in
the spectral domain than in the spatial domain. However, the
motion vectors (MVs) of some nodes are inaccurate as they
do not have explicit features. Queiroz and Chou [9] attempted
to divide each frame into multiple cubes and perform trans-
lational ME to determine whether the current block should
choose intra or inter prediction. Since the translational motion

model is unable to characterize the rotation in DPC, it is
difficult for some blocks to find the corresponding blocks. To
solve this problem, Mekuria et al. [29] proposed using the
iterative closest point (ICP) instead of the translational motion
model to better exploit the temporal correlations. However,
these works can only partially alleviate the problem of 3D
ME. They cannot solve the limitation of 3D ME due to the
inflexible partitions and inaccurate ME.

For the 2D-based method, the differences of various meth-
ods remain in how to generate the video from the DPC.
Lasserre et al. [35] proposed projecting the points in an octree
node to the cube face and organizing all the points into a
video. Budagavi et al. [36] directly sorted the points in 3D
to organize a 2D video. However, these projection methods
lead to some shape changes in the 2D video and are unable to
utilize the inter prediction technologies in HEVC. To make the
generated video easier to be encoded using HEVC, Schwarz
et al. [10] and He et al. [11] proposed projecting the point
cloud to a cylinder or cube and organizing the faces into a
2D video. However, these methods will lead to a significant
number of missing points due to occlusion. To obtain a better
trade-off between the number of projected points and the
ability to use the video compression framework, Mammou
et al. [12] proposed projecting a DPC to a video patch-by-
patch and compressing the video using HEVC. This method
wins the MPEG call for proposals for the DPC compression.
As we have mentioned in Section I, although this method
has achieved great success, there is still considerable space
to design a better video compression framework utilizing the
occupancy map to boost the DPC compression performance. In
Section III and Section IV, we will introduce the occupancy-
map-based video compression algorithms in detail.

III. OCCUPANCY-MAP-BASED RATE DISTORTION
OPTIMIZATION

In the default encoder of the HEVC reference software
(HM), the encoding parameters P are determined by mini-
mizing the following RD cost J ,

min
P

J =

N∑
i=1

Di + λR, (1)

where N is the number of pixels, Di is the distortion for a
specified pixel i, R is the total bitrate, and λ is the Lagrange
multiplier. During the RDO process, the distortion can be
the sum of the absolute difference (SAD), the sum of the
absolute transformed difference (SATD), or the sum of the
squared difference (SSD). Note that the λ is different when
various distortion metrics are used. This criterion accumulates
the distortions of all the pixels, which means that it treats
the distortions of the occupied and unoccupied pixels equally.
However, the distortions of the occupied and unoccupied pixels
have different influences on the reconstructed quality of the
point cloud. Therefore, the current RDO scheme is unsuitable
for the projected geometry and attribute videos from DPC.



4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

In this paper, we add an occupancy-map-based mask to the
distortion in the RDO scheme to solve this problem. The RD
cost of a block after adding the mask is calculated as

min
P

J =

N∑
i=1

Di ×Mi + λR, (2)

where Mi is 1 when pixel i is occupied, and Mi is 0 when
pixel i is unoccupied. Using this equation, we can ignore the
distortions of the unoccupied pixels and put more emphasis on
that of the occupied pixels. In the following, we will describe
how we fit (2) into the intra prediction, inter prediction, and
SAO in HEVC. Note that HEVC is used as an example to
explain how to apply (2) to the video compression framework.
It can be easily extended to the other video compression
standards such as Advanced Video Coding (AVC) [37] or
Versatile Video Coding (VVC) [18].

A. Intra prediction

In the HM, the intra mode decision can be roughly divided
into 3 steps: rough intra mode decision, precise intra mode
decision, and residue quadtree decision. The rough intra mode
decision generates several best intra mode candidates using the
SATD between the original and prediction signals plus the λ
times the bits of the intra prediction direction Rdir as the RD
cost,

min
P

J =

N∑
i=1

SATDi + λRdir. (3)

During this process, the residue bits are not taken into con-
sideration when calculating the Rdir. If we add the mask to
the SATD calculation, we can find a good prediction for the
occupied pixels. However, we may find very bad predictions
for the unoccupied pixels that will finally lead to a cost
of many bits for the current prediction unit (PU). For the
precise mode decision and residue quadtree decision, since
the full RDO employing the SSD between the original and
reconstruction signals plus the λ times the total bits as the RD
cost is used, (2) is applied to the SSD to ignore the distortions
of the unoccupied pixels.

B. Inter prediction

In HM, according to different RDO processes, the inter
mode can be divided into merge 2Nx2N/skip mode and
the other inter modes including inter 2Nx2N and the other
partitions. For the merge 2Nx2N/skip mode, as all the merge
candidates will go through the full RDO, (2) is applied to
ignore the distortions of unoccupied pixels. Note that the
occupied pixels of a PU can find a more suitable MV under the
merge mode through ignoring the unoccupied pixels even if the
PU includes both occupied and unoccupied pixels. However,
the merge mode is unable to handle the case where a block
contains various parts from multiple patches or the MVs from
the merge candidates are inaccurate.

The other inter modes will first go through the integer and
fractional ME to find the MV. The SAD and SATD between
the original and prediction signals plus the λ times the bits
of the motion information Rmotion is used as the RD cost for

the integer and fractional ME processes, respectively. Addi-
tionally, for the partitions except for 2Nx2N, the merge mode
will calculate the SATD between the original and prediction
signals plus the λ times the bits of the motion information
Rmotion to compare with the SATD of the fractional ME. In
all these processes, the RD cost is calculated using

min
P

J =

N∑
i=1

SADi/SATDi + λRmotion. (4)

As the residue bitrate is not taken into consideration, we
have not applied (2) in the RDO process as explained in
Section III-A. After these steps, the occupancy-map-based
RDO is used to calculate the RD cost of inter partitions to
compare with the other modes in the full RDO process.

C. Sample adaptive offset
The SAO first calculates the average offsets for different

types of edge offset (EO) and band offset (BO). Then, the
offsets are determined regarding whether they should be added
to the reconstructed pixel values of a coding tree unit (CTU)
or not using RDO. Therefore, the statistics of the offsets are
the key steps to determine the performance of SAO. Under the
original RDO process, the statistics of the offsets come from
all the pixels in the frame. However, the unoccupied pixels are
already encoded with severe distortions under the occupancy-
map-based RDO. Therefore, the average offsets will be mostly
determined by distortions of the unoccupied pixels.

The offsets derived as above have two disadvantages. First,
the occupied pixels will not have suitable offsets and their RD
performance will be degraded. Second, we will waste some
bits to encode the offsets as they will only be used by the
unoccupied pixels. In this work, we choose to only accumulate
the differences of the occupied pixels to calculate the offsets to
solve these problems. These calculated offsets will be suitable
for the occupied pixels while unsuitable for the unoccupied
pixels. Therefore, the distortions of the occupied pixels will
be reduced while the unoccupied pixels will not choose SAO
to avoid wasting bits.

IV. OCCUPANCY-MAP-BASED PARTITION

In HEVC, only regular partitions including 2Nx2N, 2NxN,
Nx2N, NxN, 2NxnU, 2NxnD, nLx2N, and nRx2N are sup-
ported. These regular partitions cannot satisfy the need of ar-
bitrary partitions derived from the occupancy map. Even if the
combination of some small regular partitions can characterize
the partition derived from the occupancy map, it may lead to
a large number of bits spent on signaling the partitions and
the corresponding multiple MVs.

A typical example of the occupancy-map-based partition is
shown in Fig. 2. Each small square in Fig. 2 represents a 4×4
block. A 4 × 4 block is the basic unit of the partition since
the occupancy map is signaled using a 4× 4 block in the V-
PCC reference software [38]. We organize all the 4×4 blocks
belonging to the same patch as one occupied PU since the
4 × 4 blocks within the same patch in a local region should
have similar motions. All the unoccupied 4 × 4 blocks are
organized as one unoccupied PU that will be predicted after
the occupied PUs.
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32x32 coding unit

Unoccupied

Occupied 

partition 1
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Fig. 2. Typical example of the occupancy-map-based partition of a 32× 32
block.
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Fig. 3. Illustration of the auxiliary information.

A. Occupied partition prediction

Essentially, the prediction of an occupied PU is to find
the corresponding block in the reference frame. However,
it is difficult to achieve this for the occupied PUs in the
patch boundary. In the patch boundary, the spatial correlations
between the MV of the occupied PU and its neighboring
PUs are very low. Additionally, since the patches with similar
content may be packed in different positions in various frames,
the temporal correlations between the MVs of the occupied PU
and its colocated PUs are also low. Without an accurate MVP
from the spatial or temporal neighbors, it is difficult for an
occupied PU to find the corresponding block in the reference
frame. Even if the occupied PU can find the corresponding
block, many bits will be spent on its MV. Both cases will lead
to significant bitrate increases and serious point cloud quality
degradations.

To handle this problem, we follow the idea in our previous
work to provide a better MVP for the occupied PU using
the auxiliary information [39] [40]. Before introducing the
proposed algorithm, we first provide a brief introduction on
the auxiliary information, as shown in Fig. 3. Fig. 3 shows
an example of the patch projected to the yoz plane. The
auxiliary information includes the index of the projected plane
n, the 2D bounding box (u0, v0, u1, v1), and the 3D start
location (δ0, s0, r0). The (u0, v0) and (u1, v1) are the start
position and the size of the 2D bounding box, respectively.
To save some bits, the (u0, v0) and (u1, v1) are based on

(xc, yc)

(u0c, v0c)
(u0r, v0r)

MVP

x

y

nc

0c
r0c
s0cz

(0, 0, 0)
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o
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o

Fig. 4. Auxiliary-information-based motion prediction.

the occupancy resolution OR. The typical value of OR is
16. Based on the auxiliary information, we can derive the 3D
coordinate (y3, z3) from the 2D coordinate (x, y) as follows,{

y3 = r0 + (y − v0×OR)
z3 = s0 + (x− u0×OR).

(5)

Note that only two dimensions of the 3D coordinates (y3, z3)
can be derived from (x, y) using the auxiliary information.
The third dimension, x3, is related to the pixel value of the
geometry frame.

Fig. 4 illustrates the basic process of the proposed auxiliary-
information-based motion prediction. The right part of the
figure is the current frame, and the left part is the reference
frame. We first find the start coordinate (xc, yc) of the first 4×4
block in Z-scan order as the representative of the current PU.
We then calculate the current 3D coordinate (y3c, z3c) from
(xc, yc) according to (5),{

y3c = r0c + (yc − v0c ×OR)
z3c = s0c + (xc − u0c ×OR),

(6)

where (u0c, v0c) is the start coordinate of the 2D bounding
box of the current patch. (δ0c, s0c, r0c) is the start location
of the 3D bounding box of the current patch.

After that, we go through all the patches in the reference
frame to find the reference patch including (y3c, z3c). The
reference patch should satisfy the following constraints. First,
the reference patch should have the same projection plane
index nr as nc. If the reference patch has a different projection
plane from the current PU, the possibility of the reference
patch containing the corresponding block is very low. Even if
the reference patch contains the corresponding block, the block
with a different projection shape change from the current PU is
unsuitable for predicting the current PU. Second, the reference
patch should contain (y3c, z3c),{

s0r ≤ z3c ≤ s0r + u1r ×OR− 1
r0r ≤ y3c ≤ r0r + v1r ×OR− 1,

(7)
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Algorithm 1 Auxiliary-information-based motion prediction
1: Input: Current PU coordinate (xc, yc)
2: Output: Current PU MV P
3: (u0c, v0c), (δ0c, r0c, s0c)← (xc, yc)
4: (z3c, y3c)← (xc, yc)
5: bestDist = MAX
6: bestIndex = 0 ▷ bestIndex is the best patch index
7: for i← 1 to Nr do ▷ Nr is number of patches
8: if nr = nc and s0r ≤ z3c ≤ s0r + u1r × OR − 1

and r0r ≤ y3c ≤ r0r + v1r ×OR− 1 then
9: dist← abs(δ0c − δ0r)

10: if dist < bestDist then
11: bestDist = dist
12: bestIndex = i
13: end if
14: end if
15: end for
16: (u0r, v0r), (r0r, s0r)← bestIndex
17: MV P ← (u0r, v0r), (r0r, s0r), (u0c, v0c), (r0c, s0c)

where (δ0r, s0r, r0r) and (u0r, v0r, u1r, v1r) are the 3D start
location and the 2D bounding box of the reference patch,
respectively.

There may be multiple patches satisfying the above two
constraints. We choose the one with fewer distances between
δ0c and δ0r since the current frame and the reference frame
should not change seriously in 3D space. Then, we can find
the correspondence between the 3D coordinate (y3c, z3c) and
the 2D coordinate (xr, yr) as{

y3c = r0r + (yr − v0r ×OR)
z3c = s0r + (xr − u0r ×OR).

(8)

Combining (6) and (8), we have{
r0c + (yc − v0c ×OR) = r0r + (yr − v0r ×OR)
s0c + (xc − u0c ×OR) = s0r + (xr − u0r ×OR).

(9)
Therefore, the MV P is derived as{

MV Py = yr − yc = r0c − r0r + (v0r − v0c)×OR
MV Px = xr − xc = s0c − s0r + (u0r − u0c)×OR.

(10)
This MVP is used as the first candidate in the advanced
motion vector prediction list. We have not added the MVP
in the merge candidate list since it is determined by the patch
information and is unable to characterize the local motions. A
detailed description of the auxiliary-information-based motion
prediction method is shown in Algorithm 1.

After obtaining the MVP, we then perform ME to find
the MV of the current PU. During the ME process, when
calculating the SAD or SATD of the current PU, only the
pixels in the current PU are used. Specifically, for the SATD
calculation, the SATD of a PU is the sum of the SATD for
each 8 × 8 block if the PU width and PU height are the
multiples of 8 in the HM. However, we can only guarantee
that the occupied PU is composed of 4× 4 blocks. Therefore,
the SATD is modified to be the sum of the SATD for each
4 × 4 block accordingly. This method to calculate the SATD

16

1
6

Fig. 5. Padding example of 16× 16 block with some pixels occupied.

is also applied to check the merge mode of the current PU.
Additionally, we modify the MC process to be performed for
each 4×4 block for the Luma component and 2×2 block for
the Chroma component. After the RDO process, the motion
information including merge flag, merge index, inter direction,
MV, MVP index, and MV difference are set for each occupied
PU for future reference.

B. Unoccupied partition prediction

After obtaining the predictions of the occupied PUs, we then
predict the unoccupied PU of both the geometry and attribute
frames in the same way as the padding of the geometry frame.
We use the padding method of the geometry frame as it is a
local method based on a 16 × 16 block. The padding of the
attribute frame uses a global push-pull algorithm [41] that is
difficult to be applied here. The prediction of the unoccupied
PU can be divided into two groups according to whether there
are occupied pixels in a 16× 16 block or not. In the case of
an 8×8 CU using the proposed partition, there must be some
occupied pixels in the CU, and thus it belongs to the case
where there are occupied pixels.

If there are some occupied and unoccupied pixels in a
16 × 16 block, we will pad the unoccupied pixels according
to the occupied ones within the 16 × 16 block, as shown
in Fig. 5. Each small square represents a pixel. The brown
pixels are occupied while the other pixels are unoccupied.
Note that the occupied pixels are always a group of 4 × 4
blocks since the occupancy map precision is 4×4. The padding
process is a gradual process with multiple iterations. In the
first iteration, the green pixels are padded using the average of
the 4-neighbor brown pixels. In the second iteration, the blue
pixels are padded using the average of the 4-neighbor green
pixels. The iterations do not end until all the unoccupied pixels
are padded.

If there are only unoccupied pixels in a 16× 16 block, the
block will be padded using the neighboring reconstructed or
predicted pixels. The reconstructed pixels are more accurate
than the predicted pixels. The predicted pixels are used when
the neighboring pixels have not been reconstructed yet. As
shown in Fig. 6 (a), there are five different cases according to
the position of the 16×16 block. Each small square represents
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Fig. 6. Five different padding cases of a 16×16 block with only unoccupied
pixels. R means reconstruction. P means prediction.

a 16 × 16 block. As an example, the CU size is the same as
the CTU. It can be easily extended to be other CU sizes larger
than or equal to 16× 16.

• The 16×16 block is the top left 16×16 block of a frame,
as shown in position 1 in Fig. 6 (a). In this case, we pad
the block using the median value related to the bit depth
for the component, as shown in Fig. 6 (b). The median
value is 128 for the bit depth 8.

• The 16 × 16 block is the left boundary of the frame
and the top left block of a CU, as shown in position
2 in Fig. 6 (a). In this case, we pad the block using the
vertical prediction from the reconstructed pixels of the
top boundary, as shown in Fig. 6 (c).

• The 16× 16 block is the left boundary of the frame but
not the top left block of a CU, as shown in position 3
in Fig. 6 (a). In this case, we pad the block using the
vertical prediction from the predicted pixels of the top
boundary, as shown in Fig. 6 (d).

• The 16×16 block is the left boundary of the CU but not
that of the frame, as shown in position 4 in Fig. 6 (a). In

TABLE I
CHARACTERISTICS OF THE TEST DYNAMIC POINT CLOUD

Test Frame Number Geometry Attributespoint cloud rate of points precision
Loot 30 ∼ 780000 10 bit RGB

RedAndBlack 30 ∼ 700000 10 bit RGB
Soldier 30 ∼ 1500000 10 bit RGB
Queen 50 ∼ 1000000 10 bit RGB

LongDress 30 ∼ 800000 10 bit RGB

TABLE II
THE VARIOUS QP SETTINGS UNDER DIFFERENT RATE POINTS

Rate points Geometry QP Attribute QP
r1 32 42
r2 28 37
r3 24 32
r4 20 27
r5 16 22

this case, we pad the block using the horizontal prediction
from the reconstructed pixels of the left boundary, as
shown in Fig. 6 (e).

• The 16× 16 block is not the left boundary of the CU, as
shown in position 5 in Fig. 6 (a). In this case, we pad the
block using the horizontal prediction from the predicted
pixels of the left boundary, as shown in Fig. 6 (f).

After the above steps for both the occupied and unoccupied
PUs, the prediction block of the current CU is obtained.
The prediction block will then go through the full RDO
to derive the RD cost and compare with other partitions.
When the occupancy-map-based partition is combined with the
occupancy-map-based RDO, the occupancy-map-based RDO
expressed in (2) is used to further improve the performance.
It should also be mentioned that only if there are multiple
partitions in the CU, will we signal a flag to the decoder to
indicate whether the proposed partition is used. The context
model of the flag is the same as that of the merge flag. When
the current CU chooses the occupancy-map-based partition,
the motion information of the occupied PUs will be signaled
to the decoder. We use the same context models as HEVC to
signal the motion information.

V. EXPERIMENTAL RESULTS

A. Simulation setup

The proposed algorithms are implemented in the V-PCC
reference software TMC2-4.0 [38] and the corresponding
HEVC reference software HM16.18-SCM8.7 [42] to compare
with the V-PCC anchor to demonstrate their effectiveness. The
occupancy-based-RDO can be used for both intra and inter
cases, while the occupancy-based-partition is mainly designed
for the inter case. Therefore, we test the lossy geometry, lossy
attributes, random access case to demonstrate the effectiveness
of the proposed algorithm. We test all five DPCs defined in the
V-PCC CTC [43] with 32 frames as a good representative of
the whole sequence to save some encoding time. The detailed
characteristics of all these DPCs are shown in Table I. We
test the five rate points from the low bitrate (r1) to the high
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bitrate (r5) defined in the V-PCC CTC [43]. The settings of the
quantization parameters (QPs) of the geometry and attribute
videos under different rate points are shown in Table II.
Since the bitrates generated by the anchor and the proposed
algorithms are not matched exactly, the Bjontegaard Delta rate
(BD-rate) [44] is employed to compare the RD performances
of various algorithms.

For the geometry, we report the BD-rates for both point-
to-point PSNR (D1) and point-to-plane PSNR (D2) [43]. For
the attribute, the PSNRs of Luma, Cb, and Cr components
are reported. For the complexity of the proposed algorithm,
since we have made changes to both the V-PCC and HEVC
reference software, we report the encoding and decoding
time change for both the V-PCC (self) and HEVC (child),
separately. In the following, we will report the performance
of the combination of the proposed algorithms followed by
that of the proposed algorithms individually. Some analysis of
the proposed algorithms, some examples of the RD curves,
and a few examples of the subjective quality improvements
are also shown to better explain the benefits of the proposed
algorithms.

B. Overall performance of the combination of the proposed
algorithms

Table III shows the performance of the combination of
the occupancy-map-based RDO and partition. Compared with
the V-PCC anchor, we can see that the combination of the
proposed algorithms can lead to an average of 20.1% and
20.2% bitrate savings for the geometry under the quality
metrics D1 and D2, respectively. For the attribute, the com-
bination of the proposed algorithms can achieve on average
36.9%, 39.5%, and 38.4% RD performance improvements
for the Luma, Cb, and Cr components, respectively. Taking
the total bitrate into consideration, the geometry BD-rate
becomes even larger while the attribute BD-rate becomes
smaller since the proposed algorithms saved more bitrate for
the attribute compared with the geometry. The experimental
results demonstrate that the proposed algorithms that make
full use of the occupancy map information can lead to very
significant bitrate savings compared with the V-PCC anchor.

For the complexities of the V-PCC encoder and decoder,
there will be only slight increases since we only output the
occupancy map and the auxiliary information. The complexity
of the HEVC encoder increases slightly while that of the
HEVC decoder decreases slightly since the occupancy-map-
based RDO will decrease the complexity while the occupancy-
map-based partition will increase the complexity due to the
extra added partition. The complexities of the proposed algo-
rithms individually will be introduced later on.

C. Performance of the proposed algorithms individually
1) Occupancy-map-based RDO: Table IV shows the perfor-

mance of the proposed occupancy-map-based RDO compared
with the V-PCC anchor. From Table IV, we can see that the
proposed occupancy-map-based RDO can obtain an average
of approximately 12% bitrate savings compared with the V-
PCC anchor for the geometry. The average performance im-
provement for the Luma component is 15.4%, which is slightly

(a) Original RDO (b) Occupancy-map-based RDO

Fig. 7. Typical examples of the reconstructed frames with occupied pixels
set as 0. The examples are POC 2 of the DPC “Loot” encoded under bitrate
r4 using the V-PCC anchor and the occupancy-map-based RDO, respectively.

(a) Original RDO (b) Occupancy-map-based RDO

Fig. 8. Typical examples of the reconstructed frames with unoccupied pixels
set as 0. The examples are POC 2 of the DPC “Loot” encoded under bitrate
r4 using V-PCC anchor and the occupancy-map-based RDO, respectively.

higher than that of the geometry. The complexity of the HEVC
encoder decreases due to the fewer RDO operations since the
skip mode can be predetermined for many unoccupied PUs.
The complexity of the HEVC decoder also decreases as the
decoder uses larger blocks for the unoccupied PUs, which will
reduce the complexity of the MC.

To better explain the benefits of the proposed occupancy-
map-based RDO, we show the comparison of one recon-
structed frame from the V-PCC anchor and the occupancy-
map-based RDO in Fig. 7 and Fig. 8. Fig. 7 shows the
comparison of the unoccupied pixels by setting the occupied
pixels as 0. We can see from the red rectangles that the
unoccupied pixels are encoded with much worse quality under
the occupancy-map-based RDO algorithm compared with the
one using the original RDO. We save a number of bits in this
way and those unoccupied pixels with bad qualities will not
have an influence on the quality of the reconstructed point
cloud at all. Fig. 8 shows the comparison of the occupied
pixels by setting the unoccupied pixels as 0. We can see
that the V-PCC anchor and the proposed occupancy-map-
based RDO leads to similar reconstructed qualities for most
occupied pixels. In some cases, the occupancy-based RDO
achieves better reconstructed quality than the V-PCC anchor,
as indicated by the magnified areas since we focus on the
occupied pixels to perform RDO. This also contributes to part
of the performance improvements.

2) Occupancy-map-based partition: Table V shows the
performance of the proposed occupancy-map-based partition
compared with the V-PCC anchor. From Table V, we can see
that the proposed occupancy-map-based partition can obtain
an average of 9.4% bitrate savings for the geometry. For
the Luma component, the proposed algorithm can lead to



LI et al.: OCCUPANCY-MAP-BASED RATE DISTORTION OPTIMIZATION AND PARTITION FOR VIDEO-BASED POINT CLOUD COMPRESSION 9

TABLE III
PERFORMANCE OF THE COMBINATION OF THE OCCUPANCY-MAP-BASED RDO AND PARTITION

Test Geom.BD-GeomRate Attr.BD-AttrRate Geom.BD-TotalRate Attr.BD-TotalRate
point cloud D1 D2 Luma Cb Cr D1 D2 Luma Cb Cr

Loot –25.5% –25.5% –47.7% –52.2% –53.4% –30.4% –30.2% –34.8% –38.6% –39.3%
RedAndBlack –10.1% –10.5% –28.4% –31.7% –27.9% –15.6% –16.1% –19.8% –22.4% –19.3%

Soldier –29.8% –29.7% –56.0% –57.5% –57.8% –35.8% –35.7% –42.7% –45.9% –46.2%
Queen –24.4% –24.3% –34.4% –36.0% –33.7% –27.6% –27.3% –29.1% –30.7% –28.5%

LongDress –10.8% –11.0% –18.1% –20.1% –19.1% –12.4% –12.9% –15.3% –17.1% –16.2%
Avg. –20.1% –20.2% –36.9% –39.5% –38.4% –24.3% –24.4% –28.4% –30.9% –29.9%

Enc. time self 101%
Dec. time self 99%

Enc. time child 102%
Dec. time child 95%

TABLE IV
PERFORMANCE OF THE OCCUPANCY-MAP-BASED RDO

Test Geom.BD-GeomRate Attr.BD-AttrRate Geom.BD-TotalRate Attr.BD-TotalRate
point cloud D1 D2 Luma Cb Cr D1 D2 Luma Cb Cr

Loot –16.3% –16.4% –24.3% –18.2% –19.3% –17.8% –17.9% –19.5% –16.1% –16.5%
RedAndBlack –6.6% –7.2% –12.2% –9.8% –12.3% –8.0% –8.9% –9.8% –8.0% –9.7%

Soldier –15.8% –16.0% –16.8% –9.4% –9.0% –14.1% –14.5% –16.9% –12.4% –12.6%
Queen –13.4% –13.2% –15.7% –11.2% –10.5% –13.5% –13.1% –14.6% –12.0% –11.1%

LongDress –7.5% –7.8% –7.9% –7.7% –7.2% –6.4% –7.2% –7.8% –7.6% –7.3%
Avg. –11.9% –12.1% –15.4% –11.3% –11.7% –11.9% –12.3% –13.7% –11.2% –11.4%

Enc. time self 101%
Dec. time self 99%

Enc. time child 88%
Dec. time child 88%

TABLE V
PERFORMANCE OF THE OCCUPANCY-MAP-BASED PARTITION

Test Geom.BD-GeomRate Attr.BD-AttrRate Geom.BD-TotalRate Attr.BD-TotalRate
point cloud D1 D2 Luma Cb Cr D1 D2 Luma Cb Cr

Loot –10.7% –10.9% –15.2% –22.5% –25.7% –11.1% –11.6% –12.9% –17.8% –19.4%
RedAndBlack –2.8% –3.0% –11.0% –16.2% –9.7% –4.8% –5.1% –7.2% –11.0% –6.4%

Soldier –16.8% –16.8% –29.4% –37.3% –36.0% –19.5% –19.5% –22.9% –29.4% –28.6%
Queen –13.5% –13.2% –10.0% –14.7% –12.7% –12.9% –12.4% –10.9% –14.3% –12.6%

LongDress –3.1% –3.1% –7.4% –9.6% –8.8% –4.7% –4.7% –5.8% –7.5% –6.9%
Avg. –9.4% –9.4% –14.6% –20.1% –18.6% –10.6% –10.6% –11.9% –16.0% –14.8%

Enc. time self 101%
Dec. time self 99%

Enc. time child 115%
Dec. time child 105%

14.6% performance improvement on average. In terms of the
complexity, the proposed algorithm will lead to approximately
15% encoder complexity increase due to the extra added
partition in the RDO process. The decoder complexity also
increases slightly since the 4 × 4 block MC is used for the
CU choosing the occupancy-map-based partition. Compared
with the obvious performance improvement achieved by the
proposed algorithm, we consider the slight complexity increase
as a good trade-off.

To explain the performance source of the proposed algo-
rithms, we disable the padding of the unoccupied PU and
use ME to find a prediction for the unoccupied PU. Table VI
shows the performance of the proposed algorithm disabling the
padding operations compared with that enabling the padding
operations. We can see that the performance of disabling the
padding operations will lead to 8.8% and 8.9% performance
losses for D1 and D2 quality measurements on average,

respectively. It will obtain an average of 1.9%, 2.3%, and
1.8% performance improvements for Luma, Cb, and Cr com-
ponents, respectively. The experimental results demonstrate
that the padding method can achieve a good prediction for the
unoccupied pixels, especially for the geometry. Additionally,
we can see that the padding operations lead to a much better
performance for the geometry than that for the attribute. This
is because the geometry and attribute use different padding
operations in the V-PCC reference software. The geometry
is padded using the padding method described in this work.
However, the attribute is padded using a global pull-push
algorithm that is difficult to be handled for a local block. We
apply the padding operations for the geometry to the attribute
to find a relatively good prediction and save the bits for the
motion information.

To better explain the benefits of the proposed algorithm, Ta-
ble VII shows the percentage of blocks where the occupancy-



10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

TABLE VI
PERFORMANCE OF THE PROPOSED PARTITION DISABLING THE PADDING OPERATIONS COMPARED WITH THAT ENABLING THE PADDING OPERATIONS

Test Geom.BD-GeomRate Attr.BD-AttrRate Geom.BD-TotalRate Attr.BD-TotalRate
point cloud D1 D2 Luma Cb Cr D1 D2 Luma Cb Cr

Loot 10.6% 10.9% 1.9% 1.3% 6.7% 8.8% 9.3% 6.4% 6.1% 8.7%
RedAndBlack 2.7% 2.9% 1.8% 2.3% 1.3% 2.5% 2.8% 2.1% 2.4% 1.8%

Soldier 15.8% 15.9% 2.4% 1.3% –2.8% 12.3% 12.4% 9.0% 6.8% 4.4%
Queen 12.1% 11.8% 2.2% 5.2% 2.7% 9.6% 9.0% 5.8% 7.8% 6.1%

LongDress 3.0% 3.0% 1.1% 1.2% 1.3% 2.3% 2.4% 1.6% 1.7% 1.8%
Avg. 8.8% 8.9% 1.9% 2.3% 1.8% 7.1% 7.2% 5.0% 5.0% 4.5%

Enc. time self 100%
Dec. time self 100%

Enc. time child 102%
Dec. time child 102%

TABLE VII
PERCENTAGE OF BLOCKS WHERE THE OCCUPANCY-MAP-BASED

PARTITION IS CHOSEN

Test point cloud Geometry Attribute
Loot 50.2% 8.1%

RedAndBlack 26.4% 10.1%
Soldier 61.1% 12.4%
Queen 51.8% 8.6%

LongDress 25.7% 9.4%
Avg. 43.0% 9.7%

Fig. 9. Typical example of the blocks choosing the occupancy-map-based
partition with POC 4 from the DPC “Soldier” encoded under bitrate r4 defined
in the CTC.

map-based partition is chosen. The percentage of blocks is
calculated using the size of the blocks with the proposed
partition dividing the size of the blocks containing both
occupied and unoccupied pixels. As we use the padding
of the geometry video to predict the unoccupied pixels,
the percentage of blocks choosing the occupancy-map-based
partition in the geometry video is much more than that in
the attribute video. The performance improvement of the
geometry video mainly comes from the proposed unoccupied
partition prediction algorithm. Therefore, the more the blocks
where the proposed occupancy-map-based partition is chosen,

the better the performance the test point cloud can achieve.
The performance improvement of the attribute video mainly
comes from the proposed auxiliary-information-based MVP.
The performance improvement is not only determined by the
percentage of blocks where the occupancy-map-based partition
is chosen, but is also influenced by the propagation of the MVs
of the occupied partition. Fig. 9 shows a typical example of the
blocks that choose the occupancy-map-based partition. The red
squares indicate those blocks choosing the occupancy-map-
based partition. We can see that the proposed occupancy-map-
based partition obtains good predictions for both the occupied
and unoccupied PUs, and therefore improves the performance
significantly.

3) Performance comparison with the combination: As seen
from Table III, Table IV, and Table V, the sum of the
performance improvements of the occupancy-map-based RDO
and partition individually is slightly larger than or equal to
the bitrate savings of the combination of these two algorithms
for the geometry. However, for the attributes, the combination
shows clear benefits compared with the sum of the two algo-
rithms. On the one hand, the occupancy-map-based partition
can predict the unoccupied pixels well. The occupancy-map-
based RDO tries to handle the bit cost of the unoccupied
pixels. This may lead to some performance overlaps. On the
other hand, only if we can accurately predict the occupied
pixels in the patch boundary, will we be able to make full use
of the occupancy-based-RDO in the following step by ignoring
all the residues. Since the geometry is much smoother than
the attribute, the occupied pixels are easier to be accurately
predicted even without the proposed algorithms. Therefore, the
previous factor is more dominant for the geometry in which
some performance overlaps can be observed, while the latter
factor is more dominant for the attribute in which clear benefits
of the combination algorithm are shown.

D. Typical examples of RD curves

Some examples of the RD curves for both the geometry and
attribute are shown in Fig. 10. From Fig. 10, we can see that
the proposed occupancy-map-based RDO and partition can
achieve very obvious performance improvements compared
with the V-PCC anchor. The combination of them can achieve
even more bitrate savings than that achieved individually.
For the two algorithms individually, for some test DPCs,
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Fig. 10. Typical examples of RD curves.

the occupancy-map-based RDO shows better performance
improvements. For the other test DPCs, the occupancy-map-
based partition shows slightly better results. Additionally, we
can see from the RD curves that the proposed algorithms show
more bitrate savings in the low bitrate case compared with that
of the high bitrate case.

E. Subjective quality

In addition to the objective quality improvements, the
combination of the proposed algorithms also leads to clear
subjective quality improvements, as shown in Fig. 11. The
left, middle, and right figures are the original point cloud,
reconstructed point cloud from the anchor and the combination
of the proposed algorithms, respectively. In Fig. 11, we can
see that the faces of the woman and soldier become much
clearer compared with the anchor even if the bit cost is much
lower. The subjective quality improvement can be expected
to be much more obvious under the same bitrate. The ben-
efits mainly come from the proposed occupancy-map-based
partition that can lead to much better predictions in the low
bitrate case. Additionally, the occupancy-map-based RDO that
focuses more on the quality of the occupied blocks contributes
part of the quality improvements.

VI. CONCLUSION

In this paper, to address the video compression inefficiency
problems that arise from unoccupied pixels, we propose intro-
ducing the occupancy-map-based rate distortion optimization
and partition into the video coding framework to improve
the compression efficiency. The occupancy-map-based RDO

mainly addresses the coding units with all the pixels unoc-
cupied. The occupancy-map-based partition tries to handle
the coding units with part of the pixels occupied while the
other pixels are unoccupied. The proposed algorithms are
implemented in the video-based point cloud compression (V-
PCC) and the corresponding High Efficiency Video Coding
reference software. The experimental results show that the
proposed algorithms can individually obtain very obvious
performance improvements compared with the V-PCC an-
chor. The combination of the proposed algorithms can lead
to even more bitrate savings. In addition to the objective
quality improvements, the proposed algorithm can lead to clear
subjective quality improvements. In the future, we will further
improve the V-PCC rate distortion performance by designing
more efficient video compression tools suitable for V-PCC.
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